Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Influence of 3D cloud effects on spatial-angular characteristics of the reflected solar radiation field

  • Optical Models and Databases
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Spatial-angular characteristics of reflected solar radiation in broken clouds are simulated in the spherical model of the atmosphere using statistical algorithms developed in the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. The patterns of formation of radiance fields of scattered radiation, caused by the finite cloud extents, mutual cloud shading, and radiation re-reflection by neighboring cloud elements are considered by the example of individual cloud realizations. It is shown that, for small and moderate cloud fractions, the specific features of the radiance field of reflected solar radiation are mainly determined by cloud localization relative to the viewing direction and direction “toward the Sun”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Varnai and A. Marshak, “Observations of threedimensional radiative effects that influence modis cloud optical thickness retrievals,” J. Atmos. Sci. 59 (9), 1607–1618 (2002).

    Article  ADS  Google Scholar 

  2. H. Iwabuchi and T. Hayasaka, “A multi-spectral nonlocal method for retrieval of boundary layer cloud properties from optical remote sensing data,” Remote Sens. Environ. 88 (3), 294–308 (2003).

    Article  Google Scholar 

  3. A. Horvath and R. Davies, “Anisotropy of water cloud reflectance: A comparison of measurements and 1d theory,” Geophys. Rev. Lett. 31 (1), L01102 (2004).

    Article  ADS  Google Scholar 

  4. A. Marshak, S. Platnick, T. Varnai, G. Wen, and R. F. Cahalan, “Impact of 3D radiative effects on satellite retrievals of cloud droplet sizes,” J. Geophys. Res., D 111 (9), DO9207 (2006).

    Article  ADS  Google Scholar 

  5. E. I. Kassianov, M. Ovchinnikov, L. K. Berg, S. A. McFarlane, C. J. Flynn, R. Ferrare, C. Hostetler, and M. Alexandrov, “Retrieval of aerosol optical depth in vicinity of broken clouds from reflectance ratios: Case study,” Atmos. Measur. Technol 3, 1333–1349 (2010).

    Article  ADS  Google Scholar 

  6. G. Wen, A. Marshak, R. Levy, L. Remer, N. Loeb, T. Varnai, and R. Cahalan, “Implementation of the correction algorithm of the MODIS aerosol retrievals near clouds,” J. Geophys. Res., D 118 (16), 9168–9181 (2013).

    ADS  Google Scholar 

  7. A. Marshak, K. V. Evans, T. Varnai, and G. Wen, “Extending 3D near-cloud corrections from shorter to longer wavelengths,” J. Quant. Spectrosc. Radiat. Transfer 147, 79–85 (2014).

    Article  ADS  Google Scholar 

  8. I. Koren, L. A. Remer, Y. J. Kaufman, Y. Rudich, and J. V. Martins, “On the twilight zone between clouds and aerosols,” Geophys. Rev. Lett. 34 (8), L08805 (2007).

    Article  ADS  Google Scholar 

  9. T. Varnai and A. Marshak, “MODIS observations of enhanced clear sky reflectance near clouds,” Geophys. Rev. Lett. 36 (6), L06807 (2009).

    Article  ADS  Google Scholar 

  10. J. C. Chiu, A. Marshak, Y. Knyazikhin, P. Pilewskie, and W. Wiscombe, “Physical interpretation of the spectral radiative signature in the transition zone between cloud-free and cloudy regions,” Atmos. Chem. Phys. 9, 1419–1430 (2009).

    Article  ADS  Google Scholar 

  11. T. F. Eck, B. N. Holben, J. S. Reid, A. Arola, R. A. Ferrare, C. A. Hostetler, S. N. Crumeyrolle, T. A. Berkoff, E. J. Welton, S. Lolli, A. Lyapustin, Y. Wang, J. S. Schafer, D. M. Giles, B. E. Anderson, K. L. Thornhill, P.Minnis, K. E. Pickering, C. P. Loughner, A. Smirnov, and A. Sinyuk, “Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds,” Atmos. Chem. Phys. 14 (21), 11633–11656 (2014).

    Article  ADS  Google Scholar 

  12. R. Z. Bar-Or, I. Koren, O. Altaratz, and E. Fredj, “Radiative properties of humidified aerosols in cloudy environment,” Atmos. Res. 118, 280–294 (2012).

    Article  Google Scholar 

  13. G. Wen, A. Marshak, R. F. Cahalan, L. A. Remer, and R. G. Kleidman, “3D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields,” J. Geophys. Res., D 112 (13), D13204 (2007).

    ADS  Google Scholar 

  14. G. Wen, A. Marshak, and R. F. Cahalan, “Impact of 3D clouds on clear sky reflectance and aerosol retrieval in a biomass burning region of Brazil,” IEEE Geosci. Remote Sens. Lett. 3, 169–172 (2006).

    Article  ADS  Google Scholar 

  15. R. F. Cahalan, L. Oreopoulos, G. Wen, A. Marshak, S. C. Tsay, and T. P. DeFelice, “Cloud characterization and clear sky correction from Landsat-7,” Remote Sens. Environ. 78, 83–98 (2001).

    Article  Google Scholar 

  16. T. Kobayashi, K. Masuda, M. Sasaki, and J. Mueller, “Monte Carlo simulations of enhanced visible radiance in clear-air satellite fields of view near clouds,” J. Geophys. Res., D 105 (21), 26569–26576 (2000).

    Article  ADS  Google Scholar 

  17. O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, A. A. Kokhanovisky, V. S. Kuznetsov, and B. Mayer, “The influence of neighboring clouds on the clear sky reflectance with the 3D transport code RADUGA,” J. Quant. Spectrosc. Radiat. Transfer 94, 405–424 (2005).

    Article  ADS  Google Scholar 

  18. M. A. Tarasenkov, I. V. Kirnos, and V. V. Belov, “Observation of the ground surface from space through a gap in the cloud field,” Atmos. Ocean. Opt. 30 (1), 39–43 (2017).

    Article  Google Scholar 

  19. V. E. Zuev and G. A. Titov, Atmospheric Optics and Climate (Spektr, Tomsk, 1996) [in Russian].

    Google Scholar 

  20. N. P. Kopytov and E. A. Mityushov, “Universal algorithm for uniform distribution of points over random analytical surfaces in 3D space,” Fundam. Issled., No. 4–3, 618–622 (2013).

    Google Scholar 

  21. T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 21 (2), 81–97 (2008).

    Google Scholar 

  22. T. B. Zhuravleva, T. V. Bedareva, M. V. Kabanov, I. M. Nasrtdinov, and S. M. Sakerin, “Specific features of angular characteristics of diffuse solar radiation in a little-cloud atmosphere,” Atmos. Ocean. Opt. 22 (6), 607–616 (2009).

    Article  Google Scholar 

  23. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russia].

    Google Scholar 

  24. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Amer. Meteorol. Soc. 79 (5), 831–844 (1998).

    Article  ADS  Google Scholar 

  25. F. X. Kneizys, D. S. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shetle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, Hanscom AFB, MA, 1996).

    Google Scholar 

  26. S. J. Hook, ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library. Dedicated CD-ROM. Version 1.2 (1998) (see also http://speclib.jpl.nasa.gov).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Zhuravleva.

Additional information

Original Russian Text © T.B. Zhuravleva, I.M. Nasrtdinov, T.V. Russkova, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, T.B., Nasrtdinov, I.M. & Russkova, T.V. Influence of 3D cloud effects on spatial-angular characteristics of the reflected solar radiation field. Atmos Ocean Opt 30, 103–110 (2017). https://doi.org/10.1134/S102485601701016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601701016X

Keywords

Navigation