Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Automatic construction of systems of distributed components from nested Petri nets models

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Multi-level multi-agent systems (MASs) with dynamic structure are widely used in solving important applied problems in telecommunication, transportation, social, and other systems. Therefore, ensuring correct behavior of such systems is an actual and important task. One of the most error-prone stages of system development in the framework of model-oriented approach is the implementation stage, in the course of which a program code is constructed based on the model developed. This paper presents an algorithm for automated translation of MAS models represented as nested Petri nets into systems of distributed components. Nested Petri nets are the extension of Petri nets in the framework of the nets-within-nets approach, which assumes that tokens in a Petri net may themselves be Petri nets, possess autonomous behavior, and interact with other tokens of the net. This makes it possible to model MASs with dynamic structure in a natural way. The translation presented in this paper preserves distribution level and important behavioral properties (safety, liveness, and conditional liveness) of the original model and ensures fairness of the target system execution. The use of such translation makes it possible to automate construction of distributed MASs by models of nested Petri nets. As a test example, translation of nested Petri nets into systems of distributed components was implemented on the basis of the EJB component technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bitcoin charts. Financial and technical data related to the Bitcoin network. http://bitcoincharts.com.

  2. Top500. List of the 500 most powerful commercially available computer systems. http://www.top500.org.

  3. Budinská, I., Kasanický, T., and Zelenka, J., Distributed multi-agent system for area coverage tasks: Architecture Intelligent Systems. Advances Intelligent Systems Computing, 2015, vol. 316, pp. 237–245.

  4. Domnori, E., Cabri, G., Leonardi, L., Multi-agent approach for disaster management, Proc. of the Int. Conf. on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2011, pp. 311–316.

    Google Scholar 

  5. Bartels, R., Herskovic, V., Monares, A., Ochoa, S.F., Pino, J.A., and Borges, M.R.S., A simple and portable command post to coordinate search and rescue activities in disaster relief efforts, Lect. Notes Comput. Sci., 2010, vol. 6257, pp. 337–344.

    Article  Google Scholar 

  6. Attie, P., Baranov, E., Bliudze, S., Jaber, M., and Sifakis, J., A general framework for architecture composability, Lect. Notes Comput. Sci., 2014, vol. 8702, pp. 128–143.

    Article  MATH  Google Scholar 

  7. Reisig, W., Understanding Petri Nets, Springer, 2013.

    Book  MATH  Google Scholar 

  8. Lomazova, I.A., Vlozhennye seti Petri: modelirovanie i analiz raspredelennykh sistem s ob"ektnoi strukturoi (Nested Petri Nets: Simulation and Analysis of Distributed Systems with Object Structure), Nauchnyi mir, 2004.

    Google Scholar 

  9. Lomazova, I.A., Nested Petri nets–a formalism for specification and verification of multi-agent distributed systems, Fundamenta Informaticae, 2000, vol. 43, nos. 1–4, pp. 195–214.

    MathSciNet  MATH  Google Scholar 

  10. van Hee, K., Lomazova, I.A., Oanea, O., Serebrenik, A., Sidorova, N., and Voorhoeve, M., Nested nets for adaptive systems, Lect. Notes Comput. Sci., 2006. vol. 4024, pp. 241–260.

    Article  MATH  Google Scholar 

  11. van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M., and Lomazova, I.A., Checking properties of adaptive workflow nets. Fundamenta Informaticae, 2007, vol. 79, no. 3, pp. 347–362.

  12. Lomazova, I.A., Modeling dynamic objects in distributed systems with nested Petri nets, Fundamenta Informaticae, 2002, vol. 51, nos. 1–2, pp. 121–123.

    MathSciNet  MATH  Google Scholar 

  13. Lomazova, I.A., Nested Petri nets for adaptive process modeling, Lect. Notes Comput. Sci., 2008, vol. 4800, pp. 413–426.

    MathSciNet  MATH  Google Scholar 

  14. Tarabuta, O., Use of “Petri nets system” concept in modeling dynamics with increased complexity, Proc. of the 15th Int. IEEE Conf. on System Theory, Control, and Computing, 2011, pp. 1–6.

    Google Scholar 

  15. Lopez-Mellado, E. and Almeyda-Canepa, H., A threelevel net formalism for the modeling of multiple mobile robot systems, Int. J. Comput. Integrated Manufacturing, 2005, vol. 18, nos. 2–3, pp. 137–146.

    Article  Google Scholar 

  16. Chang, L., He, X., Lian, J., Shatz, S., Applying a nested Petri net modeling paradigm to coordination of sensor networks with mobile agents, Proc. of Workshop on Petri Nets and Distributed Systems, Xian, 2008, pp. 132–145.

    Google Scholar 

  17. Cristini, F. and Tessier, C., Nets-within-nets to model innovative space system architectures, Lect. Notes Comput. Sci., 2012, vol. 7347, pp. 348–367.

    Article  MATH  Google Scholar 

  18. Lopez-Mellado, E., Villanueva-Paredes, N., and Almeyda-Canepa, H., Modelling of batch production systems using Petri nets with dynamic tokens, Math. Comput. Simulation, 2005, vol. 67, no. 6, pp. 541–558.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kahloul, L., Djouani, K., and Chaoui, A., Formal study of reconfigurable manufacturing systems: A high level Petri nets based approach, Lect. Notes Comput. Sci., 2013, vol. 8062, pp. 106–117.

    Article  Google Scholar 

  20. Zhang, L. and Rodrigues, B., Nested coloured timed Petri nets for production configuration of product families, Int. J. Production Research, 2010, vol. 48, no. 6, pp. 1805–1833.

    Article  Google Scholar 

  21. Dworzanski, L.W. and Lomazova, I.A., On compositionality of boundedness and liveness for Nested Petri Nets, Fundamenta Informaticae, 2012, vol. 120, nos. 3–4, pp. 243–257.

    MathSciNet  MATH  Google Scholar 

  22. Frumin, D. and Lomazova, I., Branching processes of conservative nested Petri nets, Proc. of the 2nd Int. Workshop on Verification and Program Transformation, 2014, pp. 19–35.

    Google Scholar 

  23. Dworzanski, L.W. and Lomazova, I.A., CPN toolsassisted simulation and verification of nested Petri nets, Automatic Control Comput. Sci., 2013, vol. 47, no. 7, p. 393–402.

    Article  Google Scholar 

  24. Venero, M.L.F., Verifying cross-organizational workflows over multi-agent based environments, Lect. Notes Business Information Processing, 2014, vol. 191, pp. 38–58.

    Article  Google Scholar 

  25. Raje, R.R., Zhu, D., Mukhopadhyay, S., Tang, L., Palakal, M., and Mostafa, J., COBioSIFTER &Ndash; A CORBA-based distributed multi-agent biological information management system, Cluster Computing, 2004, vol. 7, no. 4, pp. 373–389.

    Article  Google Scholar 

  26. Peng, M., He, Y., and Liu, J., The application of multiagent and CORBA in mobile-GPS system, Proc. of the Int. Conf. on Computer and Information Technology, 2004, pp. 503–508.

    Google Scholar 

  27. Cheng, T., Guan, Z., Liu, L., Wu, B., and Yang, S., A CORBA-based multi-agent system integration framework, Proc. of the 9th IEEE Int. Conf. on Engineering Complex Computer Systems, 2004, pp. 191–198.

    Google Scholar 

  28. Ivanovic, M., Vidakovic, M., Mitrovic, D., and Budimac, Z., Evolution of extensible Java EE-based agent framework, Lect. Notes Comput. Sci., 2012, vol. 7327, pp. 444–453.

    Article  Google Scholar 

  29. Chachkov, S. and Buchs, D., From formal specifications to ready-to-use software components: The concurrent object oriented Petri net approach, Proc. of the 2nd Int. Conf. on Application of Concurrency to System Design (ACSD 2001), 2001, pp. 99.

    Chapter  Google Scholar 

  30. Kristensen, L.M. and Westergaard, M., Automatic structure-based code generation from coloured Petri nets: A proof of concept, Lect. Notes Comput. Sci., 2010, vol. 6371, pp. 215–230.

    Article  Google Scholar 

  31. Jensen, K. and Kristensen, L.M., Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Springer, 2009.

    Book  MATH  Google Scholar 

  32. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V., Formalization of test experiments, Program. Comput. Software, 2007, vol. 33, pp. 239–260.

    Article  MathSciNet  MATH  Google Scholar 

  33. Bourdonov, I.B. and Kossatchev, A.S., Formalization of a test experiment-II, Program. Comput. Software, 2013, vol. 39, no. 4, pp. 161–181.

    Article  MathSciNet  MATH  Google Scholar 

  34. van Glabbeek, R.J., The linear time–branching time spectrum, Lect. Notes Comput. Sci., 1990, vol. 458, pp. 278–297.

    Article  Google Scholar 

  35. van Glabbeek, R.J., The linear time–-branching time spectrum II, Lect. Notes Comput. Sci., 1993, vol. 715, pp. 66–81.

    Article  Google Scholar 

  36. Levy, P.B., Infinite trace equivalence, Ann. Pure Applied Logic, 2008, vol. 151, nos. 2—3, pp. 170–198.

    Article  MathSciNet  MATH  Google Scholar 

  37. van Glabbeek, R.J. and Voorhoeve, M., Liveness, fairness and impossible futures, Lect. Notes Comput. Sci., 2006, vol. 4137, pp. 126–141.

    Article  MATH  Google Scholar 

  38. Fehnker, A., van Glabbeek, R.J., Hofner, P., McIver, A., Portmann, M., and Tan, W.L., A process algebra for wireless mesh networks used for modelling, verifying and analysing AODV, arXiv preprint arXiv:1312.7645, 2013.

    MATH  Google Scholar 

  39. Taubner, D. On the implementation of Petri nets, Lect. Notes Comput. Sci., 1988, vol. 340, pp. 418–439.

  40. Philippi, S., Automatic code generation from high-level Petri-Nets for model driven systems engineering, J. Systems Software, 2006, vol. 79, no. 10, pp. 1444–1455.

    Article  Google Scholar 

  41. EJB Generator: NP-nets to EJB distributed components system. https://github.com/Evil-Crab/EJBGen.

  42. Dworzanski, L. and Frumin, D. NPNtool: Modelling and analysis toolset for nested Petri nets, Proc. of the 7th Spring/Summer Young Researchers’ Colloquium on Software Engineering, 2013, pp. 9–14.

    Google Scholar 

  43. Venero, M.L.F. and da Silva, F.S.C., On the use of SPIN for studying the behavior of nested Petri nets, Lect. Notes Comput. Sci., 2013, vol. 8195, pp. 83–98.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Dworzanski.

Additional information

Original Russian Text © L.W. Dworzanski, I.A. Lomazova, 2016, published in Programmirovanie, 2016, Vol. 42, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dworzanski, L.W., Lomazova, I.A. Automatic construction of systems of distributed components from nested Petri nets models. Program Comput Soft 42, 292–306 (2016). https://doi.org/10.1134/S0361768816050029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768816050029

Navigation