Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the construction of q-ary equidistant codes

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

The problem of constructing equidistant codes over an alphabet of an arbitrary size q is considered. Some combinatorial constructions and computer-based search methods are presented. All maximal equidistant codes with distances 3 and 4 are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semakov, N.V. and Zinoviev, V.A., Equidistant q-ary Codes with Maximal Distance and Resolvable Balanced Incomplete Block Designs, Probl. Peredachi Inf., 1968, vol. 4, no. 2, pp. 3–10 [Probl. Inf. Trans. (Engl. Transl.), 1968, vol. 4, no. 2, pp. 1–7].

    MATH  Google Scholar 

  2. Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., A Class of Maximum Equidistant Codes, Probl. Peredachi Inf., 1969, vol. 5, no. 2, pp. 84–87 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 2, pp. 65–68].

    MATH  Google Scholar 

  3. van Lint, J.H., A Theorem on Equidistant Codes, Discrete Math., 1973, vol. 6, pp. 353–358.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hall, J.I., Bounds for Equidistant Codes and Partial Projective Planes, Discrete Math., 1977, vol. 17, no. 1, pp. 85–94.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hall, J.I., Jansen, A.J.E.M., Kolen, A.W.J., and van Lint, J.H., Equidistant Codes with Distance 12, Discrete Math., 1977, vol. 17, no. 1, pp. 71–83.

    Article  MathSciNet  MATH  Google Scholar 

  6. Semakov, N.V. and Zinoviev, V.A., Constant-Weight Codes and Tactical Configurations, Probl. Peredachi Inf., 1969, vol. 5, no. 3, pp. 29–38 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 3, pp. 22–28].

    Google Scholar 

  7. Bogdanova, G., Ternary Equidistant Codes and Maximum Clique Problem, in Proc. EWM Int. Workshop on Groups and Graphs, Varna, Bulgaria, 2002, pp. 15–18.

  8. Fu, F.-W., Kløve, T., Luo, Y., and Wei, V.K., On Equidistant Constant Weight Codes, Discrete Appl. Math., 2003, vol. 128, no. 1, pp. 157–164.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bogdanova, G., Todorov, T., and Zinoviev, V.A., On Construction of q-ary Equidistant Codes, in Proc. 10th Int. Workshop on Algebraic and Combinatorial Coding Theory, Zvenigorod, Russia, 2006, pp. 31–34. Available at http://dcn.infos.ru/acct/ACCT2006/papers/BogTodZin.pdf.

  10. Heise, W. and Honold, T., Some Equidistant Constant Weight Codes. Available at http://www.-m11.ma.tum.de/heise/MAT/code_oval.html.

  11. Stinson, D.R. and van Rees, G.H.J., The Equivalence of Certain Equidistant Binary Codes and Symmetric BIBDs, Combinatorica, 1984, vol. 4, no. 4, pp. 357–362.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bose, R.C. and Bush, K.A., Orthogonal Arrays of Strength Two and Three, Ann. Math. Statistics, 1952, vol. 23, no. 4, pp. 508–524.

    Article  MathSciNet  MATH  Google Scholar 

  13. Beth, T., Jungnickel, D., and Lenz, H., Design Theory, Cambridge: Cambridge Univ. Press, 1993.

    Google Scholar 

  14. Handbook of Combinatorial Designs, Colbourn, C.J. and Dinitz, J.H., Eds., Boca Raton: Chapman & Hall, 2007, 2nd ed.

    MATH  Google Scholar 

  15. Bose, R.C. and Shrikhande, S.S., A Note on a Result in the Theory of Code Construction, Inform. and Control, 1959, vol. 2, pp. 183–194.

    Article  MathSciNet  MATH  Google Scholar 

  16. Plotkin, M., Binary Codes with Specified Minimum Distance, IRE Trans. Inform. Theory, 1960, vol. 6, no. 4, pp. 445–450.

    Article  MathSciNet  Google Scholar 

  17. Delsarte, P., Bounds for Unrestricted Codes, by Linear Programming, Philips Res. Rep., 1972, vol. 27, pp. 272–289.

    MathSciNet  MATH  Google Scholar 

  18. Bassalygo, L.A., New Upper Bounds for Error Correcting Codes, Probl. Peredachi Inf., 1965, vol. 1, no. 4, pp. 41–44 [Probl. Inf. Trans. (Engl. Transl.), 1965, vol. 1, no. 4, pp. 32–35].

    MathSciNet  MATH  Google Scholar 

  19. Fu, F.-W., Han Vinck, A.J., and Shen, S.-Y., On the Constructions of Constant-Weight Codes, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 328–333.

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson, S.M., A New Upper Bound for Error-Correcting Codes, IRE Trans. Inf. Theory, 1962, vol. 8, no. 3, pp. 203–207.

    Article  Google Scholar 

  21. Hanani, H., On Resolvable Balanced Incomplete Block Designs, J. Combin. Theory, Ser. A, 1974, vol. 17, no. 2, pp. 275–289.

    Article  MathSciNet  MATH  Google Scholar 

  22. Furino, S., Miano, Y., and Yin, J., Frames and Resolvable Designs: Uses, Constructions, and Existence, Boca Raton: CRC Press, 1996.

    MATH  Google Scholar 

  23. Seberry, J., A Construction for Generalized Hadamard Matrices, J. Statist. Plann. Inference, 1980, vol. 4, no. 4, pp. 365–368.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ray-Chaudhuri, D.K. and Wilson, R.M., Solution of Kirkman’s Schoolgirl Problem, in Combinatorics (Proc. Sympos. Pure Math., vol. XIX, Univ. California, Los Angeles, 1968), Providence: AMS, 1971, pp. 187–203.

    Google Scholar 

  25. Hanani, H., Ray-Chaudhuri, D.K., and Wilson, R.M., On Resolvable Designs, Discrete Math., 1972, vol. 3, pp. 343–357.

    Article  MathSciNet  MATH  Google Scholar 

  26. Greig, M. and Abel, J., Resolvable Balanced Incomplete Block Designs with Block Size 8, Des. Codes Cryptogr., 1997, vol. 11, no. 2, pp. 123–140.

    Article  MathSciNet  MATH  Google Scholar 

  27. Bose, R.C., On the Application of Finite Projective Geometry for Deriving a Certain Series of Balanced Kirkman Arrangements, in Calcutta Math. Soc. Golden Jubilee Commemoration Vol. (1958/59), Part II, Calcutta: Calcutta Math. Soc., 1963, pp. 341–354.

    Google Scholar 

  28. Bose, R.C. and Shrikhande, S.S., On the Construction of Sets of Mutually Orthogonal Latin Squares and the Falsity of a Conjecture of Euler, Trans. Amer. Math. Soc., 1960, vol. 95, pp. 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lorimer, P., A Class of Block Designs Having the Same Parameters as the Design of Points and Lines in a Projective 3-Space, in Combinatorial Mathematics (Proc. 2nd Australian Conf., Univ. Melbourne, Melbourne, 1973), Lect. Notes Math., vol. 403, Berlin: Springer, 1974, pp. 73–78.

    Google Scholar 

  30. Ray-Chaudhuri, D.K. and Wilson, R.M., The Existence of Resolvable Block Designs, in Survey of Combinatorial Theory (Proc. Int. Sympos., Colorado State Univ., Fort Collins, 1971), Amsterdam: North-Holland, 1973, pp. 361–375.

    Google Scholar 

  31. Rumov, B.T., The Existence of Resolvable Block Designs, Mat. Sb. (N.S.), 1976, vol. 99(141), no. 3, pp. 366–379.

    MathSciNet  Google Scholar 

  32. Bush, K.A., Orthogonal Arrays of Index Unity, Ann. Math. Statist., 1952, vol. 23, pp. 426–434.

    Article  MathSciNet  MATH  Google Scholar 

  33. Bogdanova, G., Todorov, T., and Todorov, V., Web-Based Application for Coding Theory Studying, in Proc. Int. Congress of Mathematical Society of Southeastern Europe, Borovets, Bulgaria, 2003, pp. 94–99.

  34. Svanström, M., Östergård, P.R.J., and Bogdanova, G.T., Bounds and Constructions for Ternary Constant-Composition Codes, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 1, pp. 101–111.

    Article  MathSciNet  MATH  Google Scholar 

  35. McKay, B., Practical Graph Isomorphism, Congr. Numer., 1981, vol. 30, pp. 45–87.

    MathSciNet  Google Scholar 

  36. Bouyukliev, I., About the Code Equivalence, Advances in Coding Theory and Cryptology, Shaska, T., Huffman, W.C., Joyner, D., and Ustimenko, V., Eds., Series on Coding Theory and Cryptology, vol. 3, Hackensack: World Scientific, 2007, pp. 126–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. T. Bogdanova.

Additional information

Original Russian Text © G.T. Bogdanova, V.A. Zinoviev, T.J. Todorov, 2007, published in Problemy Peredachi Informatsii, 2007, Vol. 43, No. 4, pp. 13–36.

Supported in part by the Bulgarian National Science Foundation, grant no. IO-03-02/2006, and the Russian Foundation for Basic Research, project no. 06-01-00226.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanova, G.T., Zinoviev, V.A. & Todorov, T.J. On the construction of q-ary equidistant codes. Probl Inf Transm 43, 280–302 (2007). https://doi.org/10.1134/S0032946007040023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946007040023

Keywords

Navigation