Abstract
The problem of constructing equidistant codes over an alphabet of an arbitrary size q is considered. Some combinatorial constructions and computer-based search methods are presented. All maximal equidistant codes with distances 3 and 4 are found.
Similar content being viewed by others
References
Semakov, N.V. and Zinoviev, V.A., Equidistant q-ary Codes with Maximal Distance and Resolvable Balanced Incomplete Block Designs, Probl. Peredachi Inf., 1968, vol. 4, no. 2, pp. 3–10 [Probl. Inf. Trans. (Engl. Transl.), 1968, vol. 4, no. 2, pp. 1–7].
Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., A Class of Maximum Equidistant Codes, Probl. Peredachi Inf., 1969, vol. 5, no. 2, pp. 84–87 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 2, pp. 65–68].
van Lint, J.H., A Theorem on Equidistant Codes, Discrete Math., 1973, vol. 6, pp. 353–358.
Hall, J.I., Bounds for Equidistant Codes and Partial Projective Planes, Discrete Math., 1977, vol. 17, no. 1, pp. 85–94.
Hall, J.I., Jansen, A.J.E.M., Kolen, A.W.J., and van Lint, J.H., Equidistant Codes with Distance 12, Discrete Math., 1977, vol. 17, no. 1, pp. 71–83.
Semakov, N.V. and Zinoviev, V.A., Constant-Weight Codes and Tactical Configurations, Probl. Peredachi Inf., 1969, vol. 5, no. 3, pp. 29–38 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 3, pp. 22–28].
Bogdanova, G., Ternary Equidistant Codes and Maximum Clique Problem, in Proc. EWM Int. Workshop on Groups and Graphs, Varna, Bulgaria, 2002, pp. 15–18.
Fu, F.-W., Kløve, T., Luo, Y., and Wei, V.K., On Equidistant Constant Weight Codes, Discrete Appl. Math., 2003, vol. 128, no. 1, pp. 157–164.
Bogdanova, G., Todorov, T., and Zinoviev, V.A., On Construction of q-ary Equidistant Codes, in Proc. 10th Int. Workshop on Algebraic and Combinatorial Coding Theory, Zvenigorod, Russia, 2006, pp. 31–34. Available at http://dcn.infos.ru/acct/ACCT2006/papers/BogTodZin.pdf.
Heise, W. and Honold, T., Some Equidistant Constant Weight Codes. Available at http://www.-m11.ma.tum.de/heise/MAT/code_oval.html.
Stinson, D.R. and van Rees, G.H.J., The Equivalence of Certain Equidistant Binary Codes and Symmetric BIBDs, Combinatorica, 1984, vol. 4, no. 4, pp. 357–362.
Bose, R.C. and Bush, K.A., Orthogonal Arrays of Strength Two and Three, Ann. Math. Statistics, 1952, vol. 23, no. 4, pp. 508–524.
Beth, T., Jungnickel, D., and Lenz, H., Design Theory, Cambridge: Cambridge Univ. Press, 1993.
Handbook of Combinatorial Designs, Colbourn, C.J. and Dinitz, J.H., Eds., Boca Raton: Chapman & Hall, 2007, 2nd ed.
Bose, R.C. and Shrikhande, S.S., A Note on a Result in the Theory of Code Construction, Inform. and Control, 1959, vol. 2, pp. 183–194.
Plotkin, M., Binary Codes with Specified Minimum Distance, IRE Trans. Inform. Theory, 1960, vol. 6, no. 4, pp. 445–450.
Delsarte, P., Bounds for Unrestricted Codes, by Linear Programming, Philips Res. Rep., 1972, vol. 27, pp. 272–289.
Bassalygo, L.A., New Upper Bounds for Error Correcting Codes, Probl. Peredachi Inf., 1965, vol. 1, no. 4, pp. 41–44 [Probl. Inf. Trans. (Engl. Transl.), 1965, vol. 1, no. 4, pp. 32–35].
Fu, F.-W., Han Vinck, A.J., and Shen, S.-Y., On the Constructions of Constant-Weight Codes, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 328–333.
Johnson, S.M., A New Upper Bound for Error-Correcting Codes, IRE Trans. Inf. Theory, 1962, vol. 8, no. 3, pp. 203–207.
Hanani, H., On Resolvable Balanced Incomplete Block Designs, J. Combin. Theory, Ser. A, 1974, vol. 17, no. 2, pp. 275–289.
Furino, S., Miano, Y., and Yin, J., Frames and Resolvable Designs: Uses, Constructions, and Existence, Boca Raton: CRC Press, 1996.
Seberry, J., A Construction for Generalized Hadamard Matrices, J. Statist. Plann. Inference, 1980, vol. 4, no. 4, pp. 365–368.
Ray-Chaudhuri, D.K. and Wilson, R.M., Solution of Kirkman’s Schoolgirl Problem, in Combinatorics (Proc. Sympos. Pure Math., vol. XIX, Univ. California, Los Angeles, 1968), Providence: AMS, 1971, pp. 187–203.
Hanani, H., Ray-Chaudhuri, D.K., and Wilson, R.M., On Resolvable Designs, Discrete Math., 1972, vol. 3, pp. 343–357.
Greig, M. and Abel, J., Resolvable Balanced Incomplete Block Designs with Block Size 8, Des. Codes Cryptogr., 1997, vol. 11, no. 2, pp. 123–140.
Bose, R.C., On the Application of Finite Projective Geometry for Deriving a Certain Series of Balanced Kirkman Arrangements, in Calcutta Math. Soc. Golden Jubilee Commemoration Vol. (1958/59), Part II, Calcutta: Calcutta Math. Soc., 1963, pp. 341–354.
Bose, R.C. and Shrikhande, S.S., On the Construction of Sets of Mutually Orthogonal Latin Squares and the Falsity of a Conjecture of Euler, Trans. Amer. Math. Soc., 1960, vol. 95, pp. 191–209.
Lorimer, P., A Class of Block Designs Having the Same Parameters as the Design of Points and Lines in a Projective 3-Space, in Combinatorial Mathematics (Proc. 2nd Australian Conf., Univ. Melbourne, Melbourne, 1973), Lect. Notes Math., vol. 403, Berlin: Springer, 1974, pp. 73–78.
Ray-Chaudhuri, D.K. and Wilson, R.M., The Existence of Resolvable Block Designs, in Survey of Combinatorial Theory (Proc. Int. Sympos., Colorado State Univ., Fort Collins, 1971), Amsterdam: North-Holland, 1973, pp. 361–375.
Rumov, B.T., The Existence of Resolvable Block Designs, Mat. Sb. (N.S.), 1976, vol. 99(141), no. 3, pp. 366–379.
Bush, K.A., Orthogonal Arrays of Index Unity, Ann. Math. Statist., 1952, vol. 23, pp. 426–434.
Bogdanova, G., Todorov, T., and Todorov, V., Web-Based Application for Coding Theory Studying, in Proc. Int. Congress of Mathematical Society of Southeastern Europe, Borovets, Bulgaria, 2003, pp. 94–99.
Svanström, M., Östergård, P.R.J., and Bogdanova, G.T., Bounds and Constructions for Ternary Constant-Composition Codes, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 1, pp. 101–111.
McKay, B., Practical Graph Isomorphism, Congr. Numer., 1981, vol. 30, pp. 45–87.
Bouyukliev, I., About the Code Equivalence, Advances in Coding Theory and Cryptology, Shaska, T., Huffman, W.C., Joyner, D., and Ustimenko, V., Eds., Series on Coding Theory and Cryptology, vol. 3, Hackensack: World Scientific, 2007, pp. 126–151.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © G.T. Bogdanova, V.A. Zinoviev, T.J. Todorov, 2007, published in Problemy Peredachi Informatsii, 2007, Vol. 43, No. 4, pp. 13–36.
Supported in part by the Bulgarian National Science Foundation, grant no. IO-03-02/2006, and the Russian Foundation for Basic Research, project no. 06-01-00226.
Rights and permissions
About this article
Cite this article
Bogdanova, G.T., Zinoviev, V.A. & Todorov, T.J. On the construction of q-ary equidistant codes. Probl Inf Transm 43, 280–302 (2007). https://doi.org/10.1134/S0032946007040023
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1134/S0032946007040023