Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimization of Stochastic Jump Diffusion Systems Nonlinear in the Control

  • STOCHASTIC SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the optimal program control problem for a stochastic state- and control-nonlinear jump diffusion system with a given performance functional linear-quadratic in the state. Necessary and sufficient local optimality conditions are obtained, and a numerical procedure for the successive improvement of a given control program is developed. Examples of optimization problems for a switched system with random initial data and terminal invariance are considered as applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Khrustalev, M.M., Rumyantsev, D.S., and Tsarkov, K.A., Optimization of quasilinear stochastic control-nonlinear diffusion systems, Autom. Remote Control, 2017, vol. 78, no. 6, pp. 1028–1045.

    Article  MathSciNet  MATH  Google Scholar 

  2. Khrustalev, M.M. and Tsarkov, K.A., Sufficient relative minimum conditions in the optimal control problem for quasilinear stochastic systems, Autom. Remote Control, 2018, vol. 79, no. 12, pp. 2169–2185.

  3. Khrustalev, M.M. and Tsar’kov, K.A., Moment characteristic method in the optimal control theory of diffusion-type stochastic systems, J. Comput. Syst. Sci. Int., 2019, vol. 58, no. 5, pp. 684–694.

    Article  MathSciNet  MATH  Google Scholar 

  4. Øksendal, B. and Sulem, A., Applied Stochastic Control of Jump Diffusions, Berlin–Heidelberg: Springer, 2005.

  5. Platen, E. and Bruti-Liberati, N., Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Berlin–Heidelberg: Springer, 2010.

    Book  MATH  Google Scholar 

  6. Yin, G. and Zhu, C., Hybrid Switching Diffusions, New York: Springer, 2010.

    Book  MATH  Google Scholar 

  7. Bortakovskii, A.S. and Nemychenkov, G.I., Optimal in the mean control of deterministic switchable systems given discrete inexact measurements, J. Comput. Syst. Sci. Int., 2019, vol. 58, no. 1, pp. 50–74.

    Article  MathSciNet  MATH  Google Scholar 

  8. Korolyuk, V.S., Portenko, N.I., Skorokhod, A.V., and Turbin, A.F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike (Handbook of Probability Theory and Mathematical Statistics), Moscow: Nauka, 1985.

    MATH  Google Scholar 

  9. Miller, B.M. and Pankov, A.R., Teoriya sluchainykh protsessov v primerakh i zadachakh (Theory of Random Processes in Exercises and Problems), Moscow: Fizmatlit, 2002.

    Google Scholar 

  10. Khrustalev, M.M. and Tsarkov, K.A., Sufficient conditions for terminal invariance of stochastic jump diffusion systems, Autom. Remote Control, 2020, vol. 81, no. 11, pp. 2062–2077.

    Article  MathSciNet  MATH  Google Scholar 

  11. Krotov, V.F., Global methods in optimal control theory. advances in nonlinear dynamics and control: a report from Russia, in Progress in Systems and Control Theory, Boston: Birkhäuser, 1993, vol. 17.

  12. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.

    MATH  Google Scholar 

  13. Kelley, H.J., Gradient theory of optimal flight paths, J. Am. Rocket Soc., 1960, vol. 30, no. 10, pp. 947–954.

  14. Bryson, A.E. and Denham, W.F., A steepest ascent method for solving optimum programming problems, J. Appl. Mech., 1962, vol. 29, no. 2, pp. 247–257.

    Article  MathSciNet  MATH  Google Scholar 

  15. Levitin, E.S. and Polyak, B.T., Minimization methods in the presence of constraints, Zh. Vychisl. Mat. Mat. Fiz., 1966, vol. 6, no. 5, pp. 787–823.

    MathSciNet  MATH  Google Scholar 

  16. Bryson, A.E. and You-Chi Ho, Optimization, Estimation and Control, Waltham, MA–Toronto–London: Blaisdell, 1969. Translated under the title: Prikladnaya teoriya optimal’nogo upravleniya, Moscow: Nauka, 1972.

    Google Scholar 

  17. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (OptimalControl), Moscow: Fizmatlit, 2005.

    MATH  Google Scholar 

  18. Krotov, V.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Methods and Problems of Optimal Control), Moscow: Nauka, 1973.

    Google Scholar 

  19. Khrustalev, M.M. and Tsarkov, K.A., Terminal invariance of jump diffusions, Dokl. Math., 2020, vol. 102, no. 1, pp. 353–355.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hartman, P., Ordinary Differential Equations, New York–London–Sydney: John Wiley & Sons, 1964. Translated under the title: Obyknovennye differentsial’nye uravneniya, Moscow: Mir, 1970.

    MATH  Google Scholar 

  21. Dunford, N. and Schwartz, J.T., Linear Operators. Part I: General Theory, New York–London: Interscience, 1958. Translated under the title: Lineinye operatory. Obshchaya teoriya, Moscow: Izd. Inostr. Lit., 1962.

    MATH  Google Scholar 

Download references

Funding

This work was financially supported in part by the Russian Foundation for Basic Research, project no. 20-08-00400.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Khrustalev or K. A. Tsarkov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrustalev, M.M., Tsarkov, K.A. Optimization of Stochastic Jump Diffusion Systems Nonlinear in the Control. Autom Remote Control 83, 1433–1451 (2022). https://doi.org/10.1134/S0005117922090077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922090077

Keywords

Navigation