Abstract
This paper suggests a new randomized forecasting method based on entropy-robust estimation for the probability density functions (PDFs) of random parameters in dynamic models described by the systems of linear ordinary differential equations. The structure of the PDFs of the parameters and measurement noises with the maximal entropy is studied. We generate the sequence of random vectors with the entropy-optimal PDFs using a modification of the Ulam–von Neumann method. The developed method of randomized forecasting is applied to the world population forecasting problem.
Similar content being viewed by others
References
Cho, S., A Linear Bayesian Stochastic Approximation to Update Project Duration Estimation, Eur. J. Oper. Res., 2009, vol. 196, no. 2, pp. 585–593.
Zellner, A., Bayesian Shrinkage Estimation and Forecasts of Individual and Total or Aggregate Outcomes, Econom. Model., 2010, vol. 27, no. 6, pp. 1392–1397.
Horvath, R., Research & Development and Growth: A Bayesian Model Averaging Analysis, Econom. Model., 2011, vol. 28, no. 6, pp. 2669–2673.
Kim, M.J., Jiang, R., Makis, V., and Lee, C.-G., Optimal-Bayesian Fault Prediction Scheme for Partially Observable System Subject to Random Failure, Eur. J. Oper. Res., 2011, vol. 214, no. 2, pp. 331–339.
Musal, R.M., Soyer, R., McCabe, C., and Kharroubi, S.A., Estimating the Population Utility Function: A Parametric Bayesian Approach, Eur. J. Oper. Res., 2012, vol. 218, no. 2, pp. 538–547.
Borisov, A.V., A Posteriori Minimax Estimation with Likelihood Constraints, Autom. Remote Control, 2012, vol. 73, no. 9, pp. 1481–1497.
Lawrence, M., Goodwin, P., O’Connor, M., and Onkal, D., Judgemental Forecasting: A Review of Progress over the Last 25 Years, Int. J. Forecasting, 2006, vol. 22, no. 3, pp. 493–518.
Kociecki, A., Kolasa, M., and Rubaszek, M., A Bayesian Method of Combining Judgmental and Modelbased Density Forecasts, Econom. Model., 2012, vol. 29, no. 4, pp. 1349–1355.
Lahiri, K., Peng, H., and Zhao, Y., Testing the Value of Probability Forecasts for Calibrated Combining, Int. J. Forecasting, 2015, vol. 31, no. 1, pp. 113–129.
Jacobson, M.Z., Fundamentals of Atmospheric Modeling, New York: Cambridge Univer. Press, 2005, 2nd ed.
Allen, M.R. and Stainforth, D.A., Towards Objective Probabilistic Climate Forecasting, Nature, 2002, vol. 419, no. 228.
Popkov, Yu.S., Popkov, A.Yu, and Lysak, Yu.N., Estimation of Characteristics of Randomized Static Models of Data (Entropy-robust Approach), Autom. Remote Control, 2013, vol. 74, no. 11, pp. 1863–1877.
Popkov, Yu.S., Popkov, A.Yu, and Lysak, Yu.N., Estimating the Characteristics of Randomized Dynamic Data Models (Entropy-robust Approach), Autom. Remote Control, 2014, vol. 75, no. 5, pp. 872–879.
Jaynes, E.T., Information Theory and Statistical Mechanics, Physics Rev., 1957, vol. 106, pp. 620–630.
Golan, A., Information and Entropy Econometrics—A Review and Synthesis, Foundat. Trends Economet., 2008, vol. 2, no. 1–2, pp. 1–145.
Tsypkin, Ya.Z. and Popkov, Yu.S., Teoriya nelineinykh impul’snykh sistem (Theory of Nonlinear Impulse Systems), Moscow: Nauka, 1973.
Sobol’, I.M., Chislennye Metody Monte Karlo (Numerical Monte Carlo Methods), Moscow: Nauka, 1973. Translated under the title A Primer for the Monte Carlo Method, Boca Raton: CRC Press, 1994.
Rubinstein, R.Y. and Kroese, D.P., Simulation and the Monte Carlo Method, New York: Wiley, 2008.
Popkov, Yu.S. and Popkov, A.Yu., New Method of Entropy-Robust Estimation for Randomized Models under Limited Data, Entropy, 2013, vol. 16, pp. 675–698.
Popkov, Yu.S. and Popkov, A.Yu., and Darkhovskii, B.S., Parallel Monte Carlo for Entropy Robust Estimation, Math. Models Comput. Simul., 2016, vol. 8, no. 1, pp. 27–39.
Darkhovskii, B.S., Popkov, Yu.S. and Popkov, A.Yu., Monte Carlo Method of Batch Iterations: Probabilistic Characteristics, Autom. Remote Control, 2015, vol. 76, no. 5, pp. 776–786.
Cramér, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1974, 13th ed.
Kapitsa, S.P., Obshchaya teoriya rosta naseleniya Zemli (The General Theory of World Population Growth), Moscow: Nauka, 1999.
Lutz, W., Sanderson, W., and Scherbov, S., Doubling of World Population Unlikely, Nature, 1997, vol. 387, no. 19, pp. 803–805.
Popkov, A.Yu., Popkov, Yu.S., and van Wissen, L., Positive Dynamic Systems with Entropy Operator: Application to Labour Market Modeling, Eur. J. Oper. Res., 2005, vol. 164, pp. 811–828.
Popkov, Yu.S., Mathematical Demoeconomy. Integrating Demographic and Economic Approach, Berlin: DeGrouter, 2014.
Kaashoek, M.A., Seatzu, S., and van der Mee, C., Recent Advances in Operator Theory and Its Applications, New York: Springer, 2006.
Ioffe, A.D. and Tikhomirov, V.M., Teoriya ekstremal’nykh zadach (Theory of Extremal Problems), Moscow: Nauka, 1974.
Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.
Gonzalo, J.A., Munoz, F.F., and Santos, D.J., Using a Rate Equation Approach to Model World Population Trends, Simulat.: Trans. Soc. Model. Simulat. Int., 2013, vol. 89, pp. 192–198.
Shampine, L.F., MatLab Program for Quadrature in 2D, Appl. Math. Comput., 2008, vol. 202, no. 1, pp. 266–274.
Coleman, T.F. and Coleman, Y.Li., An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM J. Optim., 1996, vol. 6, pp. 418–445.
Metody statisticheskogo modelirovaniya v radiotekhnike (Statistical Modeling Methods in Radio Engineering), St. Petersburg: BGTU, 2003.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © Yu.S. Popkov, Yu.A. Dubnov, 2016, published in Avtomatika i Telemekhanika, 2016, No. 5, pp. 109–127.
Rights and permissions
About this article
Cite this article
Popkov, Y.S., Dubnov, Y.A. Entropy-robust randomized forecasting under small sets of retrospective data. Autom Remote Control 77, 839–854 (2016). https://doi.org/10.1134/S0005117916050076
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117916050076