Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Entropy-robust randomized forecasting under small sets of retrospective data

  • Stochastic Systems, Queueing Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper suggests a new randomized forecasting method based on entropy-robust estimation for the probability density functions (PDFs) of random parameters in dynamic models described by the systems of linear ordinary differential equations. The structure of the PDFs of the parameters and measurement noises with the maximal entropy is studied. We generate the sequence of random vectors with the entropy-optimal PDFs using a modification of the Ulam–von Neumann method. The developed method of randomized forecasting is applied to the world population forecasting problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, S., A Linear Bayesian Stochastic Approximation to Update Project Duration Estimation, Eur. J. Oper. Res., 2009, vol. 196, no. 2, pp. 585–593.

    Article  MATH  Google Scholar 

  2. Zellner, A., Bayesian Shrinkage Estimation and Forecasts of Individual and Total or Aggregate Outcomes, Econom. Model., 2010, vol. 27, no. 6, pp. 1392–1397.

    Article  Google Scholar 

  3. Horvath, R., Research & Development and Growth: A Bayesian Model Averaging Analysis, Econom. Model., 2011, vol. 28, no. 6, pp. 2669–2673.

    Article  Google Scholar 

  4. Kim, M.J., Jiang, R., Makis, V., and Lee, C.-G., Optimal-Bayesian Fault Prediction Scheme for Partially Observable System Subject to Random Failure, Eur. J. Oper. Res., 2011, vol. 214, no. 2, pp. 331–339.

    Article  MathSciNet  MATH  Google Scholar 

  5. Musal, R.M., Soyer, R., McCabe, C., and Kharroubi, S.A., Estimating the Population Utility Function: A Parametric Bayesian Approach, Eur. J. Oper. Res., 2012, vol. 218, no. 2, pp. 538–547.

    Article  Google Scholar 

  6. Borisov, A.V., A Posteriori Minimax Estimation with Likelihood Constraints, Autom. Remote Control, 2012, vol. 73, no. 9, pp. 1481–1497.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lawrence, M., Goodwin, P., O’Connor, M., and Onkal, D., Judgemental Forecasting: A Review of Progress over the Last 25 Years, Int. J. Forecasting, 2006, vol. 22, no. 3, pp. 493–518.

    Article  Google Scholar 

  8. Kociecki, A., Kolasa, M., and Rubaszek, M., A Bayesian Method of Combining Judgmental and Modelbased Density Forecasts, Econom. Model., 2012, vol. 29, no. 4, pp. 1349–1355.

    Article  Google Scholar 

  9. Lahiri, K., Peng, H., and Zhao, Y., Testing the Value of Probability Forecasts for Calibrated Combining, Int. J. Forecasting, 2015, vol. 31, no. 1, pp. 113–129.

    Article  Google Scholar 

  10. Jacobson, M.Z., Fundamentals of Atmospheric Modeling, New York: Cambridge Univer. Press, 2005, 2nd ed.

    Book  MATH  Google Scholar 

  11. Allen, M.R. and Stainforth, D.A., Towards Objective Probabilistic Climate Forecasting, Nature, 2002, vol. 419, no. 228.

    Article  Google Scholar 

  12. Popkov, Yu.S., Popkov, A.Yu, and Lysak, Yu.N., Estimation of Characteristics of Randomized Static Models of Data (Entropy-robust Approach), Autom. Remote Control, 2013, vol. 74, no. 11, pp. 1863–1877.

    Article  MathSciNet  MATH  Google Scholar 

  13. Popkov, Yu.S., Popkov, A.Yu, and Lysak, Yu.N., Estimating the Characteristics of Randomized Dynamic Data Models (Entropy-robust Approach), Autom. Remote Control, 2014, vol. 75, no. 5, pp. 872–879.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jaynes, E.T., Information Theory and Statistical Mechanics, Physics Rev., 1957, vol. 106, pp. 620–630.

    Article  MathSciNet  MATH  Google Scholar 

  15. Golan, A., Information and Entropy Econometrics—A Review and Synthesis, Foundat. Trends Economet., 2008, vol. 2, no. 1–2, pp. 1–145.

    MathSciNet  Google Scholar 

  16. Tsypkin, Ya.Z. and Popkov, Yu.S., Teoriya nelineinykh impul’snykh sistem (Theory of Nonlinear Impulse Systems), Moscow: Nauka, 1973.

    Google Scholar 

  17. Sobol’, I.M., Chislennye Metody Monte Karlo (Numerical Monte Carlo Methods), Moscow: Nauka, 1973. Translated under the title A Primer for the Monte Carlo Method, Boca Raton: CRC Press, 1994.

    Google Scholar 

  18. Rubinstein, R.Y. and Kroese, D.P., Simulation and the Monte Carlo Method, New York: Wiley, 2008.

    MATH  Google Scholar 

  19. Popkov, Yu.S. and Popkov, A.Yu., New Method of Entropy-Robust Estimation for Randomized Models under Limited Data, Entropy, 2013, vol. 16, pp. 675–698.

    Article  MATH  Google Scholar 

  20. Popkov, Yu.S. and Popkov, A.Yu., and Darkhovskii, B.S., Parallel Monte Carlo for Entropy Robust Estimation, Math. Models Comput. Simul., 2016, vol. 8, no. 1, pp. 27–39.

    Article  MATH  Google Scholar 

  21. Darkhovskii, B.S., Popkov, Yu.S. and Popkov, A.Yu., Monte Carlo Method of Batch Iterations: Probabilistic Characteristics, Autom. Remote Control, 2015, vol. 76, no. 5, pp. 776–786.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cramér, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1974, 13th ed.

    MATH  Google Scholar 

  23. Kapitsa, S.P., Obshchaya teoriya rosta naseleniya Zemli (The General Theory of World Population Growth), Moscow: Nauka, 1999.

    Google Scholar 

  24. Lutz, W., Sanderson, W., and Scherbov, S., Doubling of World Population Unlikely, Nature, 1997, vol. 387, no. 19, pp. 803–805.

    Article  Google Scholar 

  25. Popkov, A.Yu., Popkov, Yu.S., and van Wissen, L., Positive Dynamic Systems with Entropy Operator: Application to Labour Market Modeling, Eur. J. Oper. Res., 2005, vol. 164, pp. 811–828.

    Article  MATH  Google Scholar 

  26. Popkov, Yu.S., Mathematical Demoeconomy. Integrating Demographic and Economic Approach, Berlin: DeGrouter, 2014.

    Book  MATH  Google Scholar 

  27. Kaashoek, M.A., Seatzu, S., and van der Mee, C., Recent Advances in Operator Theory and Its Applications, New York: Springer, 2006.

    Google Scholar 

  28. Ioffe, A.D. and Tikhomirov, V.M., Teoriya ekstremal’nykh zadach (Theory of Extremal Problems), Moscow: Nauka, 1974.

    Google Scholar 

  29. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.

    MATH  Google Scholar 

  30. Gonzalo, J.A., Munoz, F.F., and Santos, D.J., Using a Rate Equation Approach to Model World Population Trends, Simulat.: Trans. Soc. Model. Simulat. Int., 2013, vol. 89, pp. 192–198.

    Article  Google Scholar 

  31. Shampine, L.F., MatLab Program for Quadrature in 2D, Appl. Math. Comput., 2008, vol. 202, no. 1, pp. 266–274.

    MathSciNet  MATH  Google Scholar 

  32. Coleman, T.F. and Coleman, Y.Li., An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM J. Optim., 1996, vol. 6, pp. 418–445.

    MATH  Google Scholar 

  33. Metody statisticheskogo modelirovaniya v radiotekhnike (Statistical Modeling Methods in Radio Engineering), St. Petersburg: BGTU, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Popkov.

Additional information

Original Russian Text © Yu.S. Popkov, Yu.A. Dubnov, 2016, published in Avtomatika i Telemekhanika, 2016, No. 5, pp. 109–127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, Y.S., Dubnov, Y.A. Entropy-robust randomized forecasting under small sets of retrospective data. Autom Remote Control 77, 839–854 (2016). https://doi.org/10.1134/S0005117916050076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916050076

Keywords

Navigation