Abstract
We present ground-based spectroscopic measurements of the total hydrogen chloride in the atmosphere of Peterhof near St. Petersburg from April 2009 to March 2012. The well-known computer code SFIT-2 (Zephyr-2) was used to interpret the spectra of the solar IR radiation. The random and systematic errors of total column (TC) HCl measurements did not exceed 3.8 and 4.5%. The seasonal behavior of TC HCl in Peterhof is characterized by the presence of a maximum in March–April and a minimum in October–November. There are also extremely small TC HCl values in January–February. The time behavior obtained for Peterhof agrees well with data from nearest stations in the NDACC international network. The ground-based measurements of the TC HCl were compared with satellite measurements with the help of ACE-FTS and MLS instruments. The direct comparisons of coincident (within a day) and collocated (within 500 km) satellite and ground-based measurements showed a correspondence of results within their total errors.
Similar content being viewed by others
References
M. J. Molina and F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone,” Nature 249, 810–812 (1974).
P. J. Crutzen, I. S. A. Isaksen, and J. R. McAfee, “The impact of the chlorocarbon industry on the ozone layer,” J. Geophys. Res. 83, 345–363 (1978).
C. B. Farmer, O. F. Raper, and R. H. Norton, “Spectroscopic detection and vertical distribution of HCI in the troposphere and stratosphere,” Geophys. Res. Lett. 3, 13–16 (1976).
M. Ackerman, D. Frimout, A. Girard, M. Gottignies, and C. Muller, “Stratospheric HCI from infrared spectra,” Geophys. Res. Lett. 3, 81–83 (1976).
W. J. Williams, J. J. Kosters, A. Goldman, and D. G. Murcray, “Measurement of the stratospheric mixing ratio of HCl using infrared absorption technique,” Geophys. Res. Lett. 3, 383–385 (1976).
Network for the Detection of Atmospheric Composition Change (NDACC). http://www.ndsc.ncep.noaa.gov
S. Solomon, “Antarctic ozone: Progress towards a quantitative understanding of ozone depletion,” Nature 347, 347–354 (1990).
C. P. Rinsland, E. Mahieu, R. Zander, et al., “Longterm trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization,” J. Geophys. Res. 108(D8), 4252 (2003). doi 10.1029/2002JD003001
R. Kohlhepp, S. Barthlott, T. Blumenstock, et al., “Trends of HCl, ClONO2, and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations,” Atmos. Chem. Phys. 11, 4669–4677. http://www.atmos-chem-phys.net/11/4669/2011/acp-11-4669-2011.pdf. doi 10.5194/acp-11-4669-2011
R. Kohlhepp, R. Ruhnke, M. P. Chipperfield, et al., “Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances,” Atmos. Chem. Phys. 11, 32085–32160. http://www.atmoschem-phys-discuss.net/11/32085/2011. doi 10.5194/acpd-11-32085-2011
A. V. Poberovskii, “High-resolution ground measurements of the IR spectra of solar radiation,” Atmos. Oceanic Opt. 23(2), 161–163 (2010).
A. V. Poberovskii, M. V. Makarova, A. V. Rakitin, et al., “Variability of the total column amounts of climate influencing gases obtained from ground-based high-resolution spectroscope measurements,” Dokl., Earth Sci. 432(1), 656–659 (2010).
HITRAN (HIgh-resolution TRANsmission molecular absorption database) 2004 and 2008. http://www.cfa.harvard.edu/hitran/
V. Eyring, D. W. Waugh, G. E. Bodeker, et al., “Multimodel projections of stratospheric ozone in the 21st century,” J. Geophys. Res. 112, D16303 (2007). doi 10.1029/2006JD008332
R. R. Garcia, D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, “Simulation of secular trends in the middle atmosphere, 1950–2003,” J. Geophys. Res. 112, D09301 (2007). doi 10.1029/2006JD007485
Aqua satellite sounding data. http://airs.jpl.nasa.gov/data-products/data-products-toc/
A. Kagawa, Y. Kasai, N. B. Jones, et al., “Characteristics and error estimation of stratospheric ozone and ozone-related species over Poker Flat (65° N, 147° W), Alaska observed by a ground-based FTIR spectrometer from 2001 to 2003,” Atmos. Chem. Phys. 7, 3791–3810 (2007). http://www.atmos-chem-phys.net/7/3791/2007
M. A. Wolff, T. Kerzenmacher, K. Strong, et al., “Validation of HNO3, ClONO2, and N2O5 from the atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS),” Atmos. Chem. Phys. 8, 3529–3562 (2008). http://www.atmos-chem-phys.net/8/3529/2008/
E. Mahieu, P. Duchatelet, P. Demoulin, et al., “Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations,” Atmos. Chem. Phys. 8, 6199–6221 (2008). http://www.atmos-chem-phys.net/8/6199/2008/
M. Khosravi, P. Baron, J. Urban, and L. Froidevaux, “Diurnal variation of stratospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements of satellite instruments,” Atmos. Chem. Phys. Discuss. 12, 21065–21104 (2012). http://www.atmos-chem-phys-discuss.net/12/21065/2012
J. W. Waters, L. Froidevaux, R. S. Harwood, et al., “The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geosci. Remote Sens. 44(5), 1075–1092 (2006). doi 10.1109/TGRS.2006.873771
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.V. Polyakov, Yu.M. Timofeev, A.V. Poberovskii, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 4, pp. 447–455.
Rights and permissions
About this article
Cite this article
Polyakov, A.V., Timofeev, Y.M. & Poberovskii, A.V. Ground-based measurements of total column of hydrogen chloride in the atmosphere near St. Petersburg. Izv. Atmos. Ocean. Phys. 49, 411–419 (2013). https://doi.org/10.1134/S0001433813040087
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0001433813040087