Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ground-based measurements of total column of hydrogen chloride in the atmosphere near St. Petersburg

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

We present ground-based spectroscopic measurements of the total hydrogen chloride in the atmosphere of Peterhof near St. Petersburg from April 2009 to March 2012. The well-known computer code SFIT-2 (Zephyr-2) was used to interpret the spectra of the solar IR radiation. The random and systematic errors of total column (TC) HCl measurements did not exceed 3.8 and 4.5%. The seasonal behavior of TC HCl in Peterhof is characterized by the presence of a maximum in March–April and a minimum in October–November. There are also extremely small TC HCl values in January–February. The time behavior obtained for Peterhof agrees well with data from nearest stations in the NDACC international network. The ground-based measurements of the TC HCl were compared with satellite measurements with the help of ACE-FTS and MLS instruments. The direct comparisons of coincident (within a day) and collocated (within 500 km) satellite and ground-based measurements showed a correspondence of results within their total errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Molina and F. S. Rowland, “Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone,” Nature 249, 810–812 (1974).

    Article  Google Scholar 

  2. P. J. Crutzen, I. S. A. Isaksen, and J. R. McAfee, “The impact of the chlorocarbon industry on the ozone layer,” J. Geophys. Res. 83, 345–363 (1978).

    Article  Google Scholar 

  3. C. B. Farmer, O. F. Raper, and R. H. Norton, “Spectroscopic detection and vertical distribution of HCI in the troposphere and stratosphere,” Geophys. Res. Lett. 3, 13–16 (1976).

    Article  Google Scholar 

  4. M. Ackerman, D. Frimout, A. Girard, M. Gottignies, and C. Muller, “Stratospheric HCI from infrared spectra,” Geophys. Res. Lett. 3, 81–83 (1976).

    Article  Google Scholar 

  5. W. J. Williams, J. J. Kosters, A. Goldman, and D. G. Murcray, “Measurement of the stratospheric mixing ratio of HCl using infrared absorption technique,” Geophys. Res. Lett. 3, 383–385 (1976).

    Article  Google Scholar 

  6. Network for the Detection of Atmospheric Composition Change (NDACC). http://www.ndsc.ncep.noaa.gov

  7. S. Solomon, “Antarctic ozone: Progress towards a quantitative understanding of ozone depletion,” Nature 347, 347–354 (1990).

    Article  Google Scholar 

  8. C. P. Rinsland, E. Mahieu, R. Zander, et al., “Longterm trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization,” J. Geophys. Res. 108(D8), 4252 (2003). doi 10.1029/2002JD003001

    Article  Google Scholar 

  9. R. Kohlhepp, S. Barthlott, T. Blumenstock, et al., “Trends of HCl, ClONO2, and HF column abundances from ground-based FTIR measurements in Kiruna (Sweden) in comparison with KASIMA model calculations,” Atmos. Chem. Phys. 11, 4669–4677. http://www.atmos-chem-phys.net/11/4669/2011/acp-11-4669-2011.pdf. doi 10.5194/acp-11-4669-2011

  10. R. Kohlhepp, R. Ruhnke, M. P. Chipperfield, et al., “Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances,” Atmos. Chem. Phys. 11, 32085–32160. http://www.atmoschem-phys-discuss.net/11/32085/2011. doi 10.5194/acpd-11-32085-2011

  11. A. V. Poberovskii, “High-resolution ground measurements of the IR spectra of solar radiation,” Atmos. Oceanic Opt. 23(2), 161–163 (2010).

    Article  Google Scholar 

  12. A. V. Poberovskii, M. V. Makarova, A. V. Rakitin, et al., “Variability of the total column amounts of climate influencing gases obtained from ground-based high-resolution spectroscope measurements,” Dokl., Earth Sci. 432(1), 656–659 (2010).

    Article  Google Scholar 

  13. HITRAN (HIgh-resolution TRANsmission molecular absorption database) 2004 and 2008. http://www.cfa.harvard.edu/hitran/

  14. V. Eyring, D. W. Waugh, G. E. Bodeker, et al., “Multimodel projections of stratospheric ozone in the 21st century,” J. Geophys. Res. 112, D16303 (2007). doi 10.1029/2006JD008332

    Article  Google Scholar 

  15. R. R. Garcia, D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, “Simulation of secular trends in the middle atmosphere, 1950–2003,” J. Geophys. Res. 112, D09301 (2007). doi 10.1029/2006JD007485

    Article  Google Scholar 

  16. Aqua satellite sounding data. http://airs.jpl.nasa.gov/data-products/data-products-toc/

  17. A. Kagawa, Y. Kasai, N. B. Jones, et al., “Characteristics and error estimation of stratospheric ozone and ozone-related species over Poker Flat (65° N, 147° W), Alaska observed by a ground-based FTIR spectrometer from 2001 to 2003,” Atmos. Chem. Phys. 7, 3791–3810 (2007). http://www.atmos-chem-phys.net/7/3791/2007

    Article  Google Scholar 

  18. M. A. Wolff, T. Kerzenmacher, K. Strong, et al., “Validation of HNO3, ClONO2, and N2O5 from the atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS),” Atmos. Chem. Phys. 8, 3529–3562 (2008). http://www.atmos-chem-phys.net/8/3529/2008/

    Article  Google Scholar 

  19. E. Mahieu, P. Duchatelet, P. Demoulin, et al., “Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations,” Atmos. Chem. Phys. 8, 6199–6221 (2008). http://www.atmos-chem-phys.net/8/6199/2008/

    Article  Google Scholar 

  20. M. Khosravi, P. Baron, J. Urban, and L. Froidevaux, “Diurnal variation of stratospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements of satellite instruments,” Atmos. Chem. Phys. Discuss. 12, 21065–21104 (2012). http://www.atmos-chem-phys-discuss.net/12/21065/2012

    Article  Google Scholar 

  21. J. W. Waters, L. Froidevaux, R. S. Harwood, et al., “The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite,” IEEE Trans. Geosci. Remote Sens. 44(5), 1075–1092 (2006). doi 10.1109/TGRS.2006.873771

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polyakov.

Additional information

Original Russian Text © A.V. Polyakov, Yu.M. Timofeev, A.V. Poberovskii, 2013, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2013, Vol. 49, No. 4, pp. 447–455.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, A.V., Timofeev, Y.M. & Poberovskii, A.V. Ground-based measurements of total column of hydrogen chloride in the atmosphere near St. Petersburg. Izv. Atmos. Ocean. Phys. 49, 411–419 (2013). https://doi.org/10.1134/S0001433813040087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433813040087

Keywords

Navigation