Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Geochemistry and petrogenesis of volcanic rocks in the Kuril island arc

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Newly obtained precise analytical data on trace elements and radiogenic Sr, Nd, and Pb isotopes testify to anomalous geochemical characteristics of mafic and intermediate Quaternary lavas in Paramushir (in the north of the Kuril arc), Kunashir and Iturup (in the south) islands, which are the largest three islands of the Kuril island arc. The high K and LREE concentrations in the volcanic products in Paramushir Island resulted from the southward expansion of the mantle thermal anomaly of the Kamchatka Peninsula and the involvement of melts related to the melting of oceanic sediments in magma generation. The depleted characteristics of the mafic volcanics are explained by the relatively young tectono-magmatic events during the opening of the Kuril backarc basin. The Kuril island-arc system developed on a heterogeneous basement. The northern islands are a continuation of the volcanic structures of southern Kamchatka, which were formed above an isotopically depleted and hot lithospheric mantle domain of composition close to that of the Pacific MORB type. The southern islands were produced above an isotopically enriched and cold lithospheric domain of the Indian-Ocean MORB type, which was modified in relation to relatively young backarc tectono-magmatic processes. Although issues related to the genesis of the transverse geochemical zoning were beyond the originally formulated scope of our research, the homogeneous enough isotopic composition of the rear-arc lavas in the absence of any mineralogical and geochemical lines of evidence of crustal contamination suggests an independent magmatic source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Arculus, “Aspects of Magma Genesis in Arcs,” Lithos 33, 189–208 (1994).

    Article  Google Scholar 

  2. G. P. Avdeiko, S. V. Popruzhenko, and A. A. Palueva, “Modern Tectonic Structure of the Kurile-Kamchatka Region and Conditions of Magma Formation,” in Geodynamics and Volcanism of the Kurile-Kamchatka Island Arc System (Petropavlovsk-Kamchatskii, 2001), pp. 9–34 [in Russian].

  3. G. P. Avdeiko, V. A. Rashidov, A. A. Poluvaeva, and I. M. Romanov, “Subwater Volcanism of the Kurile Range: Geodynamic Conditions and Formation of Geochemical Specifics,” http:www.Kscnet.Ru/Ivs/Grant/Grant-06/06-3-A-08-326/index.html

  4. J. C. Bailey, “Role of Subducted Sediments in the Genesis of Kuril-Kamchatka Island Arc Basalts: Sr Isotopic and Elemental Evidence,” Geochem. J. 30, 289–321 (1996).

    Google Scholar 

  5. J. C. Bailey, T. I. Frolova, and I. A. Burikova, “Mineralogy, Geochemistry and Petrogenesis of Kuril Island-Arc Basalts,” Contrib. Minaral. Petrol. 102, 265–280 (1989).

    Article  Google Scholar 

  6. B. Baranov, H. K. Wong, K. Dozorova, et al., “Opening Geometry of the Kurile Basin (Okhotsk Sea) as Inferred from Structural Data,” The Island Arc 11, 206–219 (2002).

    Article  Google Scholar 

  7. I. N. Bindeman and J. C. Bailey, “Trace Elements in Anorthite Megacrysts from the Kurile Island Arc: A Window to Across-Arc Geochemical Variations in Magma Compositions,” Earth Planet. Sci. Lett. 169, 209–226 (1999).

    Article  Google Scholar 

  8. O. A. Bogatikov and A. A. Tsvetkov, Magmatic Evolution of Island Arcs (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  9. J. M. Brenan, H. F. Shaw, F. J. Ryerson, and D. L. Phinney, “Mineral-Aqueous Fluid Partitioning of Trace Elements at 900°C and 2.0 GPa: Constraints on the Trace Elements Chemistry of Mantle and Deep Crustal Fluids,” Geochim. Cosmochim. Acta 59, 3331–3350 (1995).

    Article  Google Scholar 

  10. C. Class, D. M. Miller, S. L. Goldstein, and C. H. Langmuir, “Distinguishing Melt and Fluid Subduction Components in Umnak Volcanics, Aleutian Arc,” Geochem. Geophys. Geosyst. 1, GC000010 (2000).

    Article  Google Scholar 

  11. J. P. Davidson, “Deciphering Mantle and Crustal Signatures in Subduction Zone Magmatism,” in Subduction: Top to Bottom, Geophys. Monogr. Am. Geophys. Union 96, 251–262 (1996).

  12. M. J. Defant and M. S. Drummond, “Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere,” Nature 347, 662–665 (1990).

    Article  Google Scholar 

  13. S. Duggen, M. Portnyagin, J. Baker, et al., “Drastic Shift in Lava Geochemistry in the Volcanic-Front to Rear-Arc Region of the Southern Kamchtkan Subduction Zone: Evidence for the Transition from Slab Surface Dehydration to Sediment Melting,” Geochim. Cosmochim. Acta 71, 452–480 (2007).

    Article  Google Scholar 

  14. T. Elliot, “Tracers of the Slab,” in Inside the Subduction Factory, Geophys. Monogr. Am. Geophys. Union 138, 23–45 (2003).

  15. V. I. Fedorchenko, A. I. Abdurakhmanov, and R. I. Rodionova, Volcanism of the Kurile Island Arc: Geology and Petrogenesis (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  16. T. I. Frolova, I. A. Burikova, A. V. Gushchin, et al., Origin of the Island Arc Volcanic Series (Nedra, Moscow, 1985) [in Russian].

    Google Scholar 

  17. R. George, S. Turner, C. Hawkesworth, et al., “Melting Processes and Fluid and Sediment Transport Rates along the Alaska-Aleutian Arc from an Integrated U-Th-Ra-Be Isotope Study,” J. Geophys. Res. 108(B5) (2003). doi:10.1029/2002JB001916.

    Google Scholar 

  18. J. B. Gill, “Orogenic Andesites and Plate Tectonics,” (Springer, New York, 1981).

    Google Scholar 

  19. G. S. Gorshkov, Volcanism of the Kurile Island Arc (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  20. Y. Goto, M. Nakagawa, and K. Wada, “Tectonic Setting of the Miocene Volcanism in Northern Hokkaido, Japan: Speculation from their K-Ar Ages and Major Element Chemistry,” J. Mineral. Petrol. Econ. Geol. 90, 109–123 (1995).

    Article  Google Scholar 

  21. S. Iizumi, K. Maehara, P. A. Morris, and Y. Sawada, “Sr Isotope Data of Some GSJ Rock Reference Samples,” Mem. Facult. Sci. Shimane Univ. 28, 83–86 (1994).

    Google Scholar 

  22. S. Iizumi, P. A. Morris, and Y. Sawada, Nd Isotope Data for GSJ Reference Samples JB-1a, JB-3 and JG-1a and the La Jolla Standard,” Mem. Facult. Sci. Shimane Univ. 29, 73–76 (1995).

    Google Scholar 

  23. T. Ishikawa and F. Tera, “Source, Composition and Distribution of the Fluid in the Kuril Mantle Wedge: Constrain from Across-Arc Variations of B/Nb and B Isotopes,” Earth Planet. Sci. Lett. 152, 113–122 (1997).

    Article  Google Scholar 

  24. O. Ishizuka, R. N. Taylor, A. Milton, and R. W. Nesbitt, “Fluid-Mantle Interaction in an Intra-Oceanic Arc: Constraints from High-Precision Pb Isotopes,” Earth Planet. Sci. Lett. 211, 221–226 (2003).

    Article  Google Scholar 

  25. M. C. Jhonson and T. Plank, “Dehydration and Melting Experiments Constrain the Fate of Subducted Sediments,” Geochem. Geophys. Geosyst. 13, 1999. doi:10.1029/999GC000014.

  26. P. B. Kelemen, N. Shimizu, and T. Dunn, “Relative Depletion on Niobium in Some Arc Magmas and the Continental Crust: Partitioning of K, Nb, and Ce during Melt/Rock Reaction in the Upper Mantle,” Earth Planet. Sci. Lett. 120, 111–134 (1993).

    Article  Google Scholar 

  27. A. B. Kersting, R. J. Arculus, and D. A. Gust, “Lithospheric Contributions to Arc Magmatism: Isotope Variations along Strike in Volcanoes of Honshu, Japan,” Science 272, 1464–1467 (1996).

    Article  Google Scholar 

  28. J.-I. Kimura, M. Kawahara, and S. Iizumi, “Lead Isotope Analysis Using TIMS Following Single Column-Single Bead Pb Separation,” Geosci. Rept. Shimane Univ. 22, 49–53 (2003).

    Google Scholar 

  29. J.-I. Kimura and T. Yoshida, “Contributions of Slab Fluid, Mantle Wedge and Crust to the Origin of Quaternary Lavas in the NE Japan Arc,” J. Petrol. 47, 2185–232 (2006).

    Article  Google Scholar 

  30. C. H. Langmuir, E. M. Klein, and T. Plank, “Petrological Systematic of Mid-Ocean Ridge Basalts: Constrains on Melt Generation Beneath Ocean Ridges,” in Mantle Flow and Melt Generation at Mid-Ocean Ridges, Geophys. Monogr. Am. Geophys. Union 71, 183–280 (1992).

  31. V. C. Manea and M. Manea, “Thermal Models beneath Kamchatka and the Pacific Plate Rejuvenation from a Mantle Plume Impact,” in Volcanism and Subduction. The Kamchatka region, Geophys. Monogr. Am. Geophys. Union 172, 77–91 (2009).

  32. V. C. Manea, M. Manea, V. Kostoglodov, and G. Sewell, “Thermal Models, Magma Transport and Velocity Anomaly Estimation beneath Southern Kamchatka (Chapter 31),” in Plates, Plumes and Paradigms, Ed. by G. R. Foulger, D. L. Anderson, J. H. Natland, and D. C. Presnall, Geol. Soc. Am. Spec. Pap. 388, 388–431 (2005).

  33. Yu. A. Martynov, S. I. Dril’, A. A. Chashchin, et al., “Geochemistry of Basalts from Kunashir and Iturup Islands: A Role for Nonsubduction Factors in the Genesis of Kuril Island Arc Magmas,” Geokhimiya, No. 4, 369–383 (2005) [Geochem. Int. 43, 328–342 (2005)].

  34. A. Yu. Martynov, J.-I. Kimura, Yu. A. Martynov, and A. V. Rybun, “Geochemistry of Late Cenozoic Lavas on Kunashir Island, Kurile Arc,” Island Arc 19, 86–104 (2010).

    Article  Google Scholar 

  35. M. T. McCulloch and J. A. Gamble, “Geochemical and Geodynamical Constraints on Subduction Zone Magmatism,” Earth Planet. Sci. Lett. 102, 358–374 (1991).

    Article  Google Scholar 

  36. J. D. Morris and J. G. Ryan, “Subduction Zone Processes and Implication for Changing Composition of the Upper and Lower Mantle,” in Treasure on Geochemistry, Ed. by R. W. Carlson (Elsevier, Amsterdam, 2003), Vol. 2, pp. 451–470.

    Google Scholar 

  37. S. Okamura, R. J. Arculus, and Y. A. Martynov, “Multiple Magma Sources Involved in Marginal-Sea Formation: Pb, Sr, and Nd Isotopic Evidences from the Japan Sea Region,” Geology 26, 619–622 (1998).

    Article  Google Scholar 

  38. S. Okamura, R. J. Arcurus, and Y. A. Martynov, “Cenozoic Magmatism of the North-Eastern Eurasian Margin: The Role of Lithosphere Versus Asthenosphere,” J. Petrol. 46, 221–253 (2005).

    Article  Google Scholar 

  39. J. A. Pearce, P. E. Baker, P. K. Harvey, and I. W. Luff, “Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc,” J. Petrol. 32(4), 1073–1109 (1995).

    Google Scholar 

  40. J. A. Pearce, P. D. Kempton, G. M. Nowell, and S. R. Noble, “Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems,” J. Perol. 40, 1579–1611 (1999).

    Google Scholar 

  41. J. A. Pearce and I. J. Parkinson, “Trace Element Models for Mantle Melting: Application to Volcanic Arc Petrogenesis,” in Magmatic Processes and Plate Tectonics, Ed. by H. M. Prichard, T. Alabaster, N. B. W. Harris, and C. R. Neary, Geol. Spec. Publ. 76, 373–403 (1993).

  42. J. A. Pearce, R. J. Stern, S. H. Bloomer, and P. Fryer, “Geochemical Mapping of the Mariana Arc-Basin System: Implication for Nature and Distributions of Subducted Components,” Geochem. Geophys. Geosyst. 6, (2005). doi:10.1029/2004GC000895.

    Google Scholar 

  43. B. N. Piskunov, Geological-Petrographic Peculiarity of Island-Arc Volcanism (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  44. T. Plank, “Constrains from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents,” J. Petrol. 46, 921–944 (2005).

    Article  Google Scholar 

  45. T. Plank and K. Kelley, “Contrasting Sediment Input and Output at the Izu and Mariana Subduction Factories,” Eos, Trans. Am. Geophys. Union, Fall Meet., 82 (2001).

  46. T. Plank and C. H. Langmuir, “The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle,” Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  47. S. Poli and M. W. Schmidt, “Petrology of Subducted Slabs,” Ann. Rev. Earth Planet. Sci. Lett. 30, 207–235 (2002).

    Article  Google Scholar 

  48. E. I. Popolitov and O. N. Volynets, “Geochemistry of Quaternary Volcanic Rocks from the Kuril-Kamchatka Island Arc,” J. Vocanol. Geotherm. Res. 12, 299–311 (1982).

    Article  Google Scholar 

  49. J. G. Ryan, J. Morris, F. Tera, et al., “Cross-Arc Geochemical Variations in the Kurile Arc as a Function of Slab Depth,” Science 270, 625–627 (1995).

    Article  Google Scholar 

  50. K. Shuto, Y. Hirahara, H. Ishimoto, et al., “Sr and Nd Isotopic Compositions of the Magma Source beneath North Hokkaido, Japan: Comparison with the Back-Arc Side in the NE Japan Arc,” J. Volcanol. Geotherm. Res. 134, 57–75 (2004).

    Article  Google Scholar 

  51. E. V. Smirnova, I. N. Fedorova, G. P. Sandimirova, et al., “Peculiarities in the Behavior of Rare-Earth Elements in Their Determination in Black Shales by Inductively Coupled Plasma Mass Spectrometry,” Zh. Analit. Khimii 58(6), 595–603 (2003) [J. Analit. Chem. 58 (6), 533–541 (2003)].

    Google Scholar 

  52. E. M. Syracuse and G. A. Albers, “Global Compilation of Variations in Slab Depth Beneath Arc Volcanoes and Implications,” Geochem. Geophys. Geosyst. 23 (2006). doi:10.1029/2005GC001045.

    Google Scholar 

  53. I. A. Tararin, E. P. Lelikov, and T. Itaya, “Pleistocene Submarine Volcanism in the Eastern Kuril Basin, Sea of Okhotsk,” Dokl. Earth. Sci. 371(3), 366–370 (2000) [Dokl. Earth Sci. 371A, 494–498 (2000)].

    Google Scholar 

  54. M. Tiepolo, P. Bottazzi, S. F. Foley, et al., “Fractionation of Nb and Ta from Zr and Hf at Mantle Depths: The Role of Titanian Pargasite and Kaersutite,” J. Petrol. 42, 221–232 (2000).

    Article  Google Scholar 

  55. S. Turner, C. Hawkesworth, N. Rogers, et al., “238U-230Th Disequilibria, Magma Petrogenesis, and Flux Rates beneath the Depleted Tonga-Kermadec Island,” Geochim. Cosmochim. Acta 61, 4855–4884 (1997).

    Article  Google Scholar 

  56. Underwater Volcanism and Zoning of the Kurile Island Arc (Nauka, Moscow, 1992) [in Russian].

  57. J. D. Woodhead and R. W. Johnoson, “Isotopic and Trace Element Profiles across the New Britain Island Arc, Papua New Guinea,” Contrib. Mineral. Petrol. 113, 479–491 (1993).

    Article  Google Scholar 

  58. D. Z. Zhuravlev, A. A. Tsvetkov, A. Z. Zhuravlev, et al., “Lateral Variations of Neodymium and Strontium Isotope Ratios in the Quaternary Lavas of the Kurile Island Arc and Their Petrogenetic Significance,” Geokhimiya, No. 12, 1723–1736 (1985).

  59. T. K. Zlobin, V. N. Piskunov, and T. I. Frolova, “New Data on the Earth’s Crust Structure in the Central Part of the Kurile Island Arc,” Dokl. Akad. Nauk SSSR 293(2), 185–187 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Martynov.

Additional information

Original Russian Text © Yu.A. Martynov, A.I. Khanchuk, J.-I. Kimura, A.V. Rybin, A.Yu. Martynov, 2010, published in Petrologiya, 2010, Vol. 18, No. 5, pp. 512–535.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynov, Y.A., Khanchuk, A.I., Kimura, J.I. et al. Geochemistry and petrogenesis of volcanic rocks in the Kuril island arc. Petrology 18, 489–513 (2010). https://doi.org/10.1134/S0869591110050048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591110050048

Keywords

Navigation