Abstract
Climate change has placed considerable pressure on the residential environment in different areas of the world. These issues have increased the motivation of researchers to analyse and forecast the changes in critical climatic factors, such as temperature, in order to offer valuable reference outcomes for management and planning in the future. This study set out to determine to what extent global warming would affect Columbia City, Missouri, USA. The Long Ashton Research Station Weather Generator (LARS-WG) model is used for downscaling daily maximum temperatures based on the SRA1B scenario. Seven General Circulation Models (GCMs) outputs are employed for three selected periods, 2011–2030, 2046–2065 and 2080-2099. The findings show that (1) statistical analysis confirmed the skill and reliability of the LARS-WG model to downscale maximum temperature time series; (2) the ensemble mean of seven GCMs exhibited an increasing based on yearly and monthly data for all periods compared with baseline period 1980-1999. The findings can contribute to a better understanding of the impacts of climate change on the urban environment and encourage planners and stakeholders to find the best solution for mitigation of these impacts.
Export citation and abstract BibTeX RIS
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Expression of concern
This article is currently under investigation following allegations of excessive self-citation. IOP Publishing are investigating in line with the COPE guidelines and will remove or update this notice upon completion of the investigation.