Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scattering and absorbing aerosols in the climate system

Abstract

Tropospheric anthropogenic aerosols contribute the second-largest forcing to climate change, but with high uncertainty owing to their spatio-temporal variability and complicated optical properties. In this Review, we synthesize understanding of aerosol observations and their radiative and climate effects. Aerosols offset about one-third of the warming effect by anthropogenic greenhouse gases. Yet, in regions and seasons where the absorbing aerosol fraction is high — such as South America and East and South Asia — substantial atmospheric warming can occur. The internal mixing and the vertical distribution of aerosols, which alters both the direct effect and aerosol–cloud interactions, might further enhance this warming. Despite extensive research in aerosol–cloud interactions, there is still at least a 50% spread in total aerosol forcing estimates. This ongoing uncertainty is linked, in part, to the poor measurement of anthropogenic and natural aerosol absorption, as well as the little-understood effects of aerosols on clouds. Next-generation, space-borne, multi-angle polarization and active remote sensing, combined with in situ observations, offer opportunities to better constrain aerosol scattering, absorption and size distribution, thus, improving models to refine estimates of aerosol forcing and climate effects.

Key points

  • Climate models indicate at least a 30% uncertainty in aerosol direct forcing and 100% uncertainty in indirect forcing due to aerosol–cloud interactions.

  • The amount of aerosol light scattering and absorption, expressed as the aerosol single-scattering albedo parameter, is critical in affecting both aerosol radiation interaction and aerosol–cloud interactions.

  • Current satellite sensors cannot provide global-scale 3D single-scattering albedo measurements. Future observational efforts should combine satellite-based, multi-angle polarization sensors and high-spectral-resolution lidars with international aircraft and surface in situ observation networks.

  • Direct comparison of radiation properties observed by satellites with those derived from climate models that assimilate aerosol parameters will improve the understanding of aerosol microphysical properties.

  • Future work should investigate the mechanisms underlying aerosol–cloud interactions, especially the adjustment of cloud fraction and water for warm clouds and the microphysical processes in ice and mixed-phase clouds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Climatologies and trends of aerosol parameters.
Fig. 2: The radiative effects of aerosols.
Fig. 3: Effective radiative forcings for all aerosols, black carbon and sulfate over 1850–2014.
Fig. 4: Aerosol radiative forcing and its uncertainty.

Similar content being viewed by others

Data availability

Coupled Model Intercomparison Project Phase 6 (CMIP6) data used in Figs 1,3 are from the Earth System Grid Federation, available at https://esgf-node.llnl.gov/projects/cmip6. AOD and SSA data used in Fig. 1 are from Aerosol Robotic Network (AERONET), available at https://aeronet.gsfc.nasa.gov/.

References

  1. Charlson, R. J. et al. Climate forcing by anthropogenic aerosols. Science 255, 423–430 (1992).

    Article  Google Scholar 

  2. Prospero, J. et al. The atmospheric aerosol system: An overview. Rev. Geophys. 21, 1607–1629 (1983).

    Article  Google Scholar 

  3. Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M. & Ginoux, P. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. Atmos. 108, 4097 (2003).

    Article  Google Scholar 

  4. IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  5. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article  Google Scholar 

  6. Wang, C., Soden, B. J., Yang, W. & Vecchi, G. A. Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophys. Res. Lett. 48, e2020GL091024 (2021).

    Google Scholar 

  7. Gliß, J. et al. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys. 21, 87–128 (2021).

    Article  Google Scholar 

  8. Ramaswamy, V. et al. Radiative forcing of climate: the historical evolution of the radiative forcing concept, the forcing agents and their quantification, and applications. Meteorol. Monogr. 59, 14.1–14.101 (2019).

    Article  Google Scholar 

  9. Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58, e2019RG000660 (2020).

    Article  Google Scholar 

  10. Lee, L. A., Reddington, C. L. & Carslaw, K. S. On the relationship between aerosol model uncertainty and radiative forcing uncertainty. Proc. Natl Acad. Sci. USA 113, 5820–5827 (2016).

    Article  Google Scholar 

  11. Loeb, N. G. & Su, W. Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis. J. Clim. 23, 5288–5293 (2010).

    Article  Google Scholar 

  12. Thorsen, T. J., Ferrare, R. A., Kato, S. & Winker, D. M. Aerosol direct radiative effect sensitivity analysis. J. Clim. 33, 6119–6139 (2020).

    Article  Google Scholar 

  13. Hansen, J., Sato, M. & Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. Atmos. 102, 6831–6864 (1997).

    Article  Google Scholar 

  14. Liao, H. & Seinfeld, J. H. Effect of clouds on direct aerosol radiative forcing of climate. J. Geophys. Res. Atmos. 103, 3781–3788 (1998).

    Article  Google Scholar 

  15. Ramanathan, V., Crutzen, P., Kiehl, J. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

    Article  Google Scholar 

  16. Kahn, R. A. Reducing the uncertainties in direct aerosol radiative forcing. Surv. Geophys. 33, 701–721 (2012).

    Article  Google Scholar 

  17. Kahn, R. A. et al. SAM-CAAM: a concept for acquiring systematic aircraft measurements to characterize aerosol air masses. Bull. Am. Meteorol. Soc. 98, 2215–2228 (2017).

    Article  Google Scholar 

  18. Fougnie, B. et al. The multi-viewing multi-channel multi-polarisation imager–Overview of the 3MI polarimetric mission for aerosol and cloud characterization. J. Quant. Spectrosc. Radiat. Transf. 219, 23–32 (2018).

    Article  Google Scholar 

  19. Dubovik, O. et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectrosc. Radiat. Transf. 224, 474–511 (2019).

    Article  Google Scholar 

  20. Hasekamp, O. P. et al. Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities. J. Quant. Spectrosc. Radiat. Transf. 227, 170–184 (2019).

    Article  Google Scholar 

  21. Pérez-Ramírez, D. et al. Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength lidar. J. Quant. Spectrosc. Radiat. Transf. 246, 106932 (2020).

    Article  Google Scholar 

  22. Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2016).

  23. Dufresne, J.-L., Gautier, C., Ricchiazzi, P. & Fouquart, Y. Longwave scattering effects of mineral aerosols. J. Atmos. Sci. 59, 1959–1966 (2002).

    Article  Google Scholar 

  24. Chand, D., Wood, R., Anderson, T., Satheesh, S. & Charlson, R. Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci. 2, 181–184 (2009).

    Article  Google Scholar 

  25. Mishra, A. K., Koren, I. & Rudich, Y. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect. Heliyon 1, e00036 (2015).

    Article  Google Scholar 

  26. Dubovik, O. et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590–608 (2002).

    Article  Google Scholar 

  27. Mishchenko, M. I., Hovenier, J. W. & Travis, L. D. (eds) Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, 2000).

  28. Nousiainen, T., Zubko, E., Lindqvist, H., Kahnert, M. & Tyynelä, J. Comparison of scattering by different nonspherical, wavelength-scale particles. J. Quant. Spectrosc. Radiat. Transf. 113, 2391–2405 (2012).

    Article  Google Scholar 

  29. Mishchenko, M. I. & Travis, L. D. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res. Atmos. 102, 16989–17013 (1997).

    Article  Google Scholar 

  30. Mylonaki, M. et al. Aerosol type classification analysis using EARLINET multiwavelength and depolarization lidar observations. Atmos. Chem. Phys. 21, 2211–2227 (2021).

    Article  Google Scholar 

  31. Mishchenko, M. I. et al. Monitoring of aerosol forcing of climate from space: analysis of measurement requirements. J. Quant. Spectrosc. Radiat. Transf. 88, 149–161 (2004).

    Article  Google Scholar 

  32. Bond, T. C. & Bergstrom, R. W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40, 27–67 (2006).

    Article  Google Scholar 

  33. Bergstrom, R. W. et al. Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys. 7, 5937–5943 (2007).

    Article  Google Scholar 

  34. Samset, B. H. et al. Aerosol absorption: Progress towards global and regional constraints. Curr. Clim. Change Rep. 4, 65–83 (2018).

    Article  Google Scholar 

  35. Satheesh, S. & Ramanathan, V. Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature 405, 60–63 (2000).

    Article  Google Scholar 

  36. Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008).

    Article  Google Scholar 

  37. Ding, A. et al. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 43, 2873–2879 (2016).

    Article  Google Scholar 

  38. Pendergrass, A. & Hartmann, D. Global-mean precipitation and black carbon in AR4 simulations. Geophys. Res. Lett. 39, L01703 (2012).

    Article  Google Scholar 

  39. Takemura, T., Nakajima, T., Dubovik, O., Holben, B. N. & Kinne, S. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Clim. 15, 333–352 (2002).

    Article  Google Scholar 

  40. Wilcox, E. Direct and semi-direct radiative forcing of smoke aerosols over clouds. Atmos. Chem. Phys. 12, 139–149 (2012).

    Article  Google Scholar 

  41. Myhre, G. et al. Cloudy-sky contributions to the direct aerosol effect. Atmos. Chem. Phys. 20, 8855–8865 (2020).

    Article  Google Scholar 

  42. Samset, B. H. et al. Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys. 13, 2423–2434 (2013).

    Article  Google Scholar 

  43. Haywood, J. & Ramaswamy, V. Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res. Atmos. 103, 6043–6058 (1998).

    Article  Google Scholar 

  44. Chýlek, P., Ramaswamy, V. & Srivastava, V. Albedo of soot-contaminated snow. J. Geophys. Res. Oceans 88, 10837–10843 (1983).

    Article  Google Scholar 

  45. Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423–428 (2004).

    Article  Google Scholar 

  46. Doherty, S., Warren, S., Grenfell, T., Clarke, A. & Brandt, R. Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys. 10, 11647–11680 (2010).

    Article  Google Scholar 

  47. Sarangi, C. et al. Dust dominates high-altitude snow darkening and melt over high-mountain Asia. Nat. Clim. Change 10, 1045–1051 (2020).

    Article  Google Scholar 

  48. Ramana, M. et al. Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nat. Geosci. 3, 542–545 (2010).

    Article  Google Scholar 

  49. Jacobson, M. Z. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res. Atmos. 106, 1551–1568 (2001).

    Article  Google Scholar 

  50. Chýlek, P. & Coakley, J. A. Aerosols and climate. Science 183, 75–77 (1974).

    Article  Google Scholar 

  51. Ackerman, T. P. & Toon, O. B. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl. Opt. 20, 3661–3668 (1981).

    Article  Google Scholar 

  52. Chýlek, P., Ramaswamy, V. & Cheng, R. J. Effect of graphitic carbon on the albedo of clouds. J. Atmos. Sci. 41, 3076–3084 (1984).

    Article  Google Scholar 

  53. Jacobson, M. Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697 (2001).

    Article  Google Scholar 

  54. Cappa, C. D. et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337, 1078–1081 (2012).

    Article  Google Scholar 

  55. Vuolo, M. R., Schulz, M., Balkanski, Y. & Takemura, T. A new method for evaluating the impact of vertical distribution on aerosol radiative forcing in general circulation models. Atmos. Chem. Phys. 14, 877–897 (2014).

    Article  Google Scholar 

  56. Lohmann, U. & Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005).

    Article  Google Scholar 

  57. Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).

    Article  Google Scholar 

  58. Han, Q., Rossow, W. B., Zeng, J. & Welch, R. Three different behaviors of liquid water path of water clouds in aerosol–cloud interactions. J. Atmos. Sci. 59, 726–735 (2002).

    Article  Google Scholar 

  59. Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E. & Toon, O. B. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432, 1014–1017 (2004).

    Article  Google Scholar 

  60. Chen, Y.-C., Christensen, M. W., Stephens, G. L. & Seinfeld, J. H. Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci. 7, 643–646 (2014).

    Article  Google Scholar 

  61. Gryspeerdt, E., Stier, P. & Partridge, D. Satellite observations of cloud regime development: the role of aerosol processes. Atmos. Chem. Phys. 14, 1141–1158 (2014).

    Article  Google Scholar 

  62. Sato, Y. et al. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nat. Commun. 9, 985 (2018).

    Article  Google Scholar 

  63. Toll, V., Christensen, M., Quaas, J. & Bellouin, N. Weak average liquid-cloud-water response to anthropogenic aerosols. Nature 572, 51–55 (2019).

    Article  Google Scholar 

  64. Penner, J. E., Zhou, C., Garnier, A. & Mitchell, D. L. Anthropogenic aerosol indirect effects in cirrus clouds. J. Geophys. Res. Atmos. 123, 11,652–11,677 (2018).

    Article  Google Scholar 

  65. McGraw, Z., Storelvmo, T., Samset, B. H. & Stjern, C. W. Global radiative impacts of black carbon acting as ice nucleating particles. Geophys. Res. Lett. 47, e2020GL089056 (2020).

    Article  Google Scholar 

  66. Adams, M. P. et al. A major combustion aerosol event had a negligible impact on the atmospheric ice-nucleating particle population. J. Geophys. Res. Atmos. 125, e2020JD032938 (2020).

    Article  Google Scholar 

  67. Stjern, C. W. et al. Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. J. Geophys. Res. Atmos. 122, 11,462–11,481 (2017).

    Article  Google Scholar 

  68. Smith, C. et al. Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett. 45, 12,023–12,031 (2018).

    Article  Google Scholar 

  69. Thornhill, G. D. et al. Effective radiative forcing from emissions of reactive gases and aerosols–a multi-model comparison. Atmos. Chem. Phys. 21, 853–874 (2021).

    Article  Google Scholar 

  70. Conant, W. C., Nenes, A. & Seinfeld, J. H. Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended Köhler theory. J. Geophys. Res. Atmos. 107, AAC 23-1–AAC 23-9 (2002).

    Article  Google Scholar 

  71. Holben, B. N. et al. AERONET — A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1–16 (1998).

    Article  Google Scholar 

  72. Levy, R. et al. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034 (2013).

    Article  Google Scholar 

  73. Omar, A. H. et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 26, 1994–2014 (2009).

    Article  Google Scholar 

  74. Kahn, R. A. & Gaitley, B. J. An analysis of global aerosol type as retrieved by MISR. J. Geophys. Res. Atmos. 120, 4248–4281 (2015).

    Article  Google Scholar 

  75. Herich, H. et al. In situ determination of atmospheric aerosol composition as a function of hygroscopic growth. J. Geophys. Res. Atmos. 113, D16213 (2008).

    Article  Google Scholar 

  76. Moffet, R. C. & Prather, K. A. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl Acad. Sci. USA 106, 11872–11877 (2009).

    Article  Google Scholar 

  77. Laj, P. et al. A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmos. Meas. Tech. 13, 4353–4392 (2020).

    Article  Google Scholar 

  78. Ziemba, L. D. et al. Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity. Geophys. Res. Lett. 40, 417–422 (2013).

    Article  Google Scholar 

  79. Nakajima, T. & Tanaka, M. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transf. 40, 51–69 (1988).

    Article  Google Scholar 

  80. Dubovik, O. & King, M. D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 105, 20673–20696 (2000).

    Article  Google Scholar 

  81. Sinyuk, A. et al. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 13, 3375–3411 (2020).

    Article  Google Scholar 

  82. Dubovik, O. et al. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. Atmos. 105, 9791–9806 (2000).

    Article  Google Scholar 

  83. Takamura, T. Overview of SKYNET and its activities. Opt. Pura Apl. 37, 3303–3308 (2004).

    Google Scholar 

  84. Che, H. et al. Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 15, 7619–7652 (2015).

    Article  Google Scholar 

  85. Singh, A. et al. An overview of airborne measurement in Nepal–Part 1: Vertical profile of aerosol size, number, spectral absorption, and meteorology. Atmos. Chem. Phys. 19, 245–258 (2019).

    Article  Google Scholar 

  86. Li, C., Li, J., Dubovik, O., Zeng, Z.-C. & Yung, Y. L. Impact of aerosol vertical distribution on aerosol optical depth retrieval from passive satellite sensors. Remote Sens. 12, 1524 (2020).

    Article  Google Scholar 

  87. Klett, J. D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 24, 1638–1643 (1985).

    Article  Google Scholar 

  88. Burton, S. P. et al. Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals. Atmos. Meas. Tech. 9, 5555–5574 (2016).

    Article  Google Scholar 

  89. Welton, E. J., Campbell, J. R., Spinhirne, J. D. & Scott III, V. S. in Lidar Remote Sensing for Industry and Environment Monitoring 151–158 (International Society for Optics and Photonics, 2001).

  90. Bösenberg, J. et al. EARLINET: a European aerosol research lidar network. Adv. Laser Remote Sensing 155, 6–181 (2001).

    Google Scholar 

  91. Antuña-Marrero, J. C. et al. LALINET: The first Latin American–born regional atmospheric observational network. Bull. Am. Meteorol. Soc. 98, 1255–1275 (2017).

    Article  Google Scholar 

  92. Lopatin, A. et al. Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: applications to radiometer, lidar and radiosonde observations. Atmos. Meas. Tech. 14, 2575–2614 (2021).

    Article  Google Scholar 

  93. Kaufman, Y. et al. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. Atmos. 102, 16815–16830 (1997).

    Article  Google Scholar 

  94. Torres, O., Bhartia, P., Herman, J., Ahmad, Z. & Gleason, J. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. Atmos. 103, 17099–17110 (1998).

    Article  Google Scholar 

  95. Hammer, M. S. et al. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects. Atmos. Chem. Phys. 16, 2507–2523 (2016).

    Article  Google Scholar 

  96. Mahowald, N. M. & Dufresne, J. L. Sensitivity of TOMS aerosol index to boundary layer height: Implications for detection of mineral aerosol sources. Geophys. Res. Lett. 31, L03103 (2004).

    Article  Google Scholar 

  97. Torres, O. et al. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 112, D24S47 (2007).

    Article  Google Scholar 

  98. Martonchik, J. V., Kahn, R. A. & Diner, D. J. in Satellite Aerosol Remote Sensing Over Land 267–293 (Springer, 2009).

  99. Hasekamp, O. P. & Landgraf, J. Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study. J. Geophys. Res. Atmos. 110, D20207 (2005).

    Article  Google Scholar 

  100. Dubovik, O. et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 4, 975–1018 (2011).

    Article  Google Scholar 

  101. Schutgens, N. et al. AEROCOM and AEROSAT AAOD and SSA study–Part 1: Evaluation and intercomparison of satellite measurements. Atmos. Chem. Phys. 21, 6895–6917 (2021).

    Article  Google Scholar 

  102. Chen, C. et al. Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring. Earth Syst. Sci. Data 12, 3573–3620 (2020).

    Article  Google Scholar 

  103. Xu, F. et al. Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager. J. Geophys. Res. Atmos. 122, 7004–7026 (2017).

    Article  Google Scholar 

  104. Torres, O., Jethva, H. & Bhartia, P. Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies. J. Atmos. Sci. 69, 1037–1053 (2012).

    Article  Google Scholar 

  105. Ahn, C., Torres, O., Jethva, H., Tiruchirapalli, R. & Huang, L. K. Evaluation of aerosol properties observed by DSCOVR/EPIC instrument from the Earth-Sun Lagrange 1 orbit. J. Geophys. Res. Atmos. 126, e2020JD033651 (2021).

    Article  Google Scholar 

  106. Wu, L. et al. Passive remote sensing of aerosol layer height using near-UV multiangle polarization measurements. Geophys. Res. Lett. 43, 8783–8790 (2016).

    Article  Google Scholar 

  107. Zeng, Z. C. et al. Constraining aerosol vertical profile in the boundary layer using hyperspectral measurements of oxygen absorption. Geophys. Res. Lett. 45, 10,772–10,780 (2018).

    Article  Google Scholar 

  108. Zeng, Z.-C. et al. Constraining the vertical distribution of coastal dust aerosol using OCO-2 O2 A-band measurements. Remote Sens. Environ. 236, 111494 (2020).

    Article  Google Scholar 

  109. Xu, X. et al. Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space. Atmos. Meas. Tech. 12, 3269–3288 (2019).

    Article  Google Scholar 

  110. Nelson, D. L., Garay, M. J., Kahn, R. A. & Dunst, B. A. Stereoscopic height and wind retrievals for aerosol plumes with the MISR INteractive eXplorer (MINX). Remote Sens. 5, 4593–4628 (2013).

    Article  Google Scholar 

  111. McGill, M. J., Yorks, J. E., Scott, V. S., Kupchock, A. W. & Selmer, P. A. in Lidar Remote Sensing for Environmental Monitoring XV (International Society for Optics and Photonics, 2016).

  112. Noel, V., Chepfer, H., Chiriaco, M. & Yorks, J. The diurnal cycle of cloud profiles over land and ocean between 51°S and 51°N, seen by the CATS spaceborne lidar from the International Space Station. Atmos. Chem. Phys. 18, 9457–9473 (2018).

    Article  Google Scholar 

  113. Thorsen, T. J., Winker, D. M. & Ferrare, R. A. Uncertainty in observational estimates of the aerosol direct radiative effect and forcing. J. Clim. 34, 195–214 (2021).

    Article  Google Scholar 

  114. Rosenfeld, D., Sherwood, S., Wood, R. & Donner, L. Climate effects of aerosol-cloud interactions. Science 343, 379–380 (2014).

    Article  Google Scholar 

  115. Gryspeerdt, E. et al. Constraining the instantaneous aerosol influence on cloud albedo. Proc. Natl Acad. Sci. USA 114, 4899–4904 (2017).

    Article  Google Scholar 

  116. Heintzenberg, J. et al. Intercomparisons and aerosol calibrations of 12 commercial integrating nephelometers of three manufacturers. J. Atmos. Ocean. Technol. 23, 902–914 (2006).

    Article  Google Scholar 

  117. Eleftheriadis, K., Vratolis, S. & Nyeki, S. Aerosol black carbon in the European Arctic: measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007. Geophys. Res. Lett. 36, L02809 (2009).

    Article  Google Scholar 

  118. Bond, T. C., Anderson, T. L. & Campbell, D. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30, 582–600 (1999).

    Article  Google Scholar 

  119. Seinfeld, J. H. et al. Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl Acad. Sci. USA 113, 5781–5790 (2016).

    Article  Google Scholar 

  120. van der Werf, G. R. et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

    Article  Google Scholar 

  121. Hsu, N. et al. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 12, 8037–8053 (2012).

    Article  Google Scholar 

  122. Zhang, J. & Reid, J. A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmos. Chem. Phys. 10, 10949–10963 (2010).

    Article  Google Scholar 

  123. Liu, M. & Matsui, H. Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016. Atmos. Chem. Phys. 21, 5965–5982 (2021).

    Article  Google Scholar 

  124. Li, J., Carlson, B. E., Dubovik, O. & Lacis, A. A. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys. 14, 12271–12289 (2014).

    Article  Google Scholar 

  125. Lyapustin, A. et al. Reduction of aerosol absorption in Beijing since 2007 from MODIS and AERONET. Geophys. Res. Lett. 38, L10803 (2011).

    Article  Google Scholar 

  126. Mishchenko, M. I. et al. Aerosol retrievals from channel-1 and -2 AVHRR radiances: Long-term trends updated and revisited. J. Quant. Spectrosc. Radiat. Transf. 113, 1974–1980 (2012).

    Article  Google Scholar 

  127. Diffenbaugh, N. S. et al. The COVID-19 lockdowns: a window into the Earth System. Nat. Rev. Earth Environ. 1, 470–481 (2020).

    Article  Google Scholar 

  128. Gettelman, A., Lamboll, R., Bardeen, C., Forster, P. & Watson-Parris, D. Climate impacts of COVID-19 induced emission changes. Geophys. Res. Lett. 48, e2020GL091805 (2021).

    Article  Google Scholar 

  129. Reifenberg, S. F. et al. Impact of reduced emissions on direct and indirect aerosol radiative forcing during COVID–19 lockdown in Europe. Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2021-1005 (2021).

    Article  Google Scholar 

  130. Ming, Y. et al. Assessing the influence of COVID-19 on the shortwave radiative fluxes over the East Asian marginal seas. Geophys. Res. Lett. 48, e2020GL091699 (2021).

    Article  Google Scholar 

  131. Bowman, D. M. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  132. Evangeliou, N. et al. Changes in black carbon emissions over Europe due to COVID-19 lockdowns. Atmos. Chem. Phys. 21, 2675–2692 (2021).

    Article  Google Scholar 

  133. Huang, X. et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci. Rev. 8, nwaa137 (2021).

    Article  Google Scholar 

  134. Weber, J. et al. Minimal climate impacts from short-lived climate forcers following emission reductions related to the COVID-19 pandemic. Geophys. Res. Lett. 47, e2020GL090326 (2020).

    Article  Google Scholar 

  135. Forster, P. M. et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Change 10, 913–919 (2020).

    Article  Google Scholar 

  136. Li, J. Pollution trends in China from 2000 to 2017: A multi-sensor view from space. Remote Sens. 12, 208 (2020).

    Article  Google Scholar 

  137. Turnock, S. T. et al. Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys. 20, 14547–14579 (2020).

    Article  Google Scholar 

  138. Paasonen, P. et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci. 6, 438–442 (2013).

    Article  Google Scholar 

  139. Touma, D., Stevenson, S., Lehner, F. & Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 12, 212 (2021).

    Article  Google Scholar 

  140. Allen, R. J., Landuyt, W. & Rumbold, S. T. An increase in aerosol burden and radiative effects in a warmer world. Nat. Clim. Change 6, 269–274 (2016).

    Article  Google Scholar 

  141. Mahowald, N. M., Lamarque, J. F., Tie, X. X. & Wolff, E. Sea-salt aerosol response to climate change: Last Glacial Maximum, preindustrial, and doubled carbon dioxide climates. J. Geophys. Res. Atmos. 111, D05303 (2006).

    Google Scholar 

  142. Struthers, H. et al. Climate-induced changes in sea salt aerosol number emissions: 1870 to 2100. J. Geophys. Res. Atmos. 118, 670–682 (2013).

    Article  Google Scholar 

  143. Liao, H., Chen, W. T. & Seinfeld, J. H. Role of climate change in global predictions of future tropospheric ozone and aerosols. J. Geophys. Res. Atmos. 111, D12304 (2006).

    Article  Google Scholar 

  144. Jones, A., Haywood, J. M. & Boucher, O. Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res. Atmos. 112, D20211 (2007).

    Article  Google Scholar 

  145. Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).

    Article  Google Scholar 

  146. Kok, J. F., Ward, D. S., Mahowald, N. M. & Evan, A. T. Global and regional importance of the direct dust-climate feedback. Nat. Commun. 9, 241 (2018).

    Article  Google Scholar 

  147. Levy, H. et al. The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos. 118, 4521–4532 (2013).

    Article  Google Scholar 

  148. Ramaswamy, V., Ming, Y. & Schwarzkopf, M. D. in Hydrological Aspects of Climate Change (eds Pandey, A. Kumar, S. & Kumar, A.) 61–76 (Springer, 2021).

  149. Meehl, G. A., Boer, G. J., Covey, C., Latif, M. & Stouffer, R. J. The coupled model intercomparison project (CMIP). Bull. Am. Meteorol. Soc. 81, 313–318 (2000).

    Article  Google Scholar 

  150. Schulz, M. et al. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys. 6, 5225–5246 (2006).

    Article  Google Scholar 

  151. Shindell, D. T. et al. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys. 13, 2939–2974 (2013).

    Article  Google Scholar 

  152. Yu, H. et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 6, 613–666 (2006).

    Article  Google Scholar 

  153. Quaas, J., Boucher, O., Bellouin, N. & Kinne, S. Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res. Atmos. 113, D05204 (2008).

    Article  Google Scholar 

  154. Hasekamp, O. P., Gryspeerdt, E. & Quaas, J. Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions. Nat. Commun. 10, 5405 (2019).

    Article  Google Scholar 

  155. Gryspeerdt, E. et al. Surprising similarities in model and observational aerosol radiative forcing estimates. Atmos. Chem. Phys. 20, 613–623 (2020).

    Article  Google Scholar 

  156. Allen, R. J. & Landuyt, W. The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport. J. Geophys. Res. Atmos. 119, 4808–4835 (2014).

    Article  Google Scholar 

  157. Regayre, L. A. et al. The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. Atmos. Chem. Phys. 20, 10063–10072 (2020).

    Article  Google Scholar 

  158. Carslaw, K. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

    Article  Google Scholar 

  159. Penner, J. E., Zhou, C. & Xu, L. Consistent estimates from satellites and models for the first aerosol indirect forcing. Geophys. Res. Lett. 39, L13810 (2012).

    Article  Google Scholar 

  160. Carslaw, K. S. et al. Aerosols in the pre-industrial atmosphere. Curr. Clim. Change Rep. 3, 1–15 (2017).

    Article  Google Scholar 

  161. Ocko, I. B., Ramaswamy, V., Ginoux, P., Ming, Y. & Horowitz, L. W. Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors. J. Geophys. Res. Atmos. 117, D20203 (2012).

    Article  Google Scholar 

  162. Myhre, G. & Samset, B. H. Standard climate models radiation codes underestimate black carbon radiative forcing. Atmos. Chem. Phys. 15, 2883–2888 (2015).

    Article  Google Scholar 

  163. Ramaswamy, V. & Chen, C. T. Linear additivity of climate response for combined albedo and greenhouse perturbations. Geophys. Res. Lett. 24, 567–570 (1997).

    Article  Google Scholar 

  164. Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol effect. J. Clim. 15, 2103–2116 (2002).

    Article  Google Scholar 

  165. Ming, Y. & Ramaswamy, V. Nonlinear climate and hydrological responses to aerosol effects. J. Clim. 22, 1329–1339 (2009).

    Article  Google Scholar 

  166. Xie, S.-P., Lu, B. & Xiang, B. Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci. 6, 828–832 (2013).

    Article  Google Scholar 

  167. Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).

    Article  Google Scholar 

  168. Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).

    Article  Google Scholar 

  169. Ramanathan, V. et al. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

    Article  Google Scholar 

  170. Chung, C. E. & Ramanathan, V. Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Clim. 19, 2036–2045 (2006).

    Article  Google Scholar 

  171. Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).

    Article  Google Scholar 

  172. Navarro, J. A. et al. Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci. 9, 277–281 (2016).

    Article  Google Scholar 

  173. Wang, Y. et al. Reduced European aerosol emissions suppress winter extremes over northern Eurasia. Nat. Clim. Change 10, 225–230 (2020).

    Article  Google Scholar 

  174. Polson, D., Bollasina, M., Hegerl, G. C. & Wilcox, L. Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett. 41, 6023–6029 (2014).

    Article  Google Scholar 

  175. Chung, E.-S. & Soden, B. J. Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci. 10, 566–571 (2017).

    Article  Google Scholar 

  176. Xu, Y. & Xie, S.-P. Ocean mediation of tropospheric response to reflecting and absorbing aerosols. Atmos. Chem. Phys. 15, 5827–5833 (2015).

    Article  Google Scholar 

  177. Suzuki, K. & Takemura, T. Perturbations to global energy budget due to absorbing and scattering aerosols. J. Geophys. Res. Atmos. 124, 2194–2209 (2019).

    Article  Google Scholar 

  178. Ocko, I. B., Ramaswamy, V. & Ming, Y. Contrasting climate responses to the scattering and absorbing features of anthropogenic aerosol forcings. J. Clim. 27, 5329–5345 (2014).

    Article  Google Scholar 

  179. Kim, M. J., Yeh, S. W. & Park, R. J. Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985–2010. Geophys. Res. Lett. 43, 1364–1372 (2016).

    Article  Google Scholar 

  180. Jiang, Y. et al. Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carbon-induced Tibetan Plateau warming. J. Geophys. Res. Atmos. 122, 5883–5902 (2017).

    Article  Google Scholar 

  181. Liu, Z. et al. A model investigation of aerosol-induced changes in the East Asian winter monsoon. Geophys. Res. Lett. 46, 10186–10195 (2019).

    Article  Google Scholar 

  182. Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002).

    Article  Google Scholar 

  183. Zhang, Y. et al. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia. Geophys. Res. Lett. 36, L10814 (2009).

    Article  Google Scholar 

  184. Undorf, S. et al. Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation. J. Geophys. Res. Atmos. 123, 4871–4889 (2018).

    Article  Google Scholar 

  185. Bollasina, M. A., Ming, Y., Ramaswamy, V., Schwarzkopf, M. D. & Naik, V. Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian Monsoon. Geophys. Res. Lett. 41, 680–687 (2014).

    Article  Google Scholar 

  186. Qiu, Y., Liao, H., Zhang, R. & Hu, J. Simulated impacts of direct radiative effects of scattering and absorbing aerosols on surface layer aerosol concentrations in China during a heavily polluted event in February 2014. J. Geophys. Res. Atmos. 122, 5955–5975 (2017).

    Article  Google Scholar 

  187. Li, Z. et al. Aerosol and boundary-layer interactions and impact on air quality. Natl Sci. Rev. 4, 810–833 (2017).

    Article  Google Scholar 

  188. Thornhill, G. et al. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmos. Chem. Phys. 21, 1105–1126 (2021).

    Article  Google Scholar 

  189. Mishchenko, M. I. et al. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission. Bull. Am. Meteorol. Soc. 88, 677–692 (2007).

    Article  Google Scholar 

  190. Martins, J. V., Fernandez-Borda, R., McBride, B., Remer, L. & Barbosa, H. M. in IGARSS IEEE International Geoscience and Remote Sensing Symposium 6304–6307 (IEEE, 2018).

  191. Pérez-Ramírez, D. et al. Retrievals of aerosol single scattering albedo by multiwavelength lidar measurements: Evaluations with NASA Langley HSRL-2 during discover-AQ field campaigns. Remote Sens. Environ. 222, 144–164 (2019).

    Article  Google Scholar 

  192. Starr, D. in Hyperspectral Imaging and Sounding of the Environment (Optical Society of America, 2011).

  193. Gorman, E. T. et al. in Sensors, Systems, and Next-Generation Satellites XXIII (International Society for Optics and Photonics, 2019).

  194. Braun, S. A. et al. The NASA Decadal Survey Observing-System Study for Aerosols and Clouds, Convection, and Precipitation (ACCP) (NASA, 2020).

  195. Illingworth, A. J. et al. The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteorol. Soc. 96, 1311–1332 (2015).

    Article  Google Scholar 

  196. Hansen, J., Rossow, W. B. & Fung, I. Long-Term Monitoring of Global Climate Forcings and Feedbacks Vol. 3234 (NASA, 1993).

  197. Bocquet, M. et al. Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. 15, 5325–5358 (2015).

    Article  Google Scholar 

  198. Chen, C. et al. Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm. Atmos. Chem. Phys. 18, 12551–12580 (2018).

    Article  Google Scholar 

  199. Tsikerdekis, A., Schutgens, N. A. & Hasekamp, O. P. Assimilating aerosol optical properties related to size and absorption from POLDER/PARASOL with an ensemble data assimilation system. Atmos. Chem. Phys. 21, 2637–2674 (2021).

    Article  Google Scholar 

  200. El Amraoui, L. et al. Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations. Atmos. Meas. Tech. 13, 4645–4667 (2020).

    Article  Google Scholar 

  201. Liang, Y. et al. Development of a three-dimensional variational assimilation system for lidar profile data based on a size-resolved aerosol model in WRF–Chem model v3.9.1 and its application in PM2.5 forecasts across China. Geosci. Model Dev. 13, 6285–6301 (2020).

    Article  Google Scholar 

  202. Randles, C. et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 30, 6823–6850 (2017).

    Article  Google Scholar 

  203. Yumimoto, K., Tanaka, T. Y., Oshima, N. & Maki, T. JRAero: the Japanese reanalysis for aerosol v1.0. Geosci. Model Dev. 10, 3225–3253 (2017).

    Article  Google Scholar 

  204. Zhu, J. & Penner, J. E. Global modeling of secondary organic aerosol with organic nucleation. J. Geophys. Res. Atmos. 124, 8260–8286 (2019).

    Article  Google Scholar 

  205. Horowitz, L. W. et al. The GFDL global atmospheric chemistry-climate model AM4.1: Model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002032 (2020).

    Article  Google Scholar 

  206. Chang, D. et al. Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. Atmos. Environ. 162, 127–140 (2017).

    Article  Google Scholar 

  207. Eidhammer, T., Morrison, H., Mitchell, D., Gettelman, A. & Erfani, E. Improvements in global climate model microphysics using a consistent representation of ice particle properties. J. Clim. 30, 609–629 (2017).

    Article  Google Scholar 

  208. Righi, M. et al. Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model. Geosci. Model Dev. 13, 1635–1661 (2020).

    Article  Google Scholar 

  209. Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).

    Article  Google Scholar 

  210. Zhang, L. et al. Clear-sky direct aerosol radiative forcing uncertainty associated with aerosol optical properties based on CMIP6 models. J. Clim. 35, 3007–3019 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

J.L., L.Z. and Y.D. acknowledge funding from National Natural Science Foundation of China grant nos. 41975023 and 42175144. O.D. appreciates support from the Chemical and Physical Properties of the Atmosphere Project funded by the French National Research Agency through the Programme d’Investissement d’Avenir under contract ANR-11-LABX-0005-01, the Regional Council “Hauts-de-France”, and the European Funds for Regional Economic Development.

Author information

Authors and Affiliations

Authors

Contributions

J.L., B.E.C., A.A.L. and Y.L.Y. led the Review. J.L. wrote the initial draft and prepared Fig. 2, Box 1 and Supplementary Fig. 1. L.Z. prepared Fig. 1, Fig. 4 and Supplementary Figs 2, 3. Y.D. prepared Fig. 3 and Table 1. All authors contributed to the manuscript preparation, interpretation, discussion and writing.

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Fangqun Yu, Otto Hasekamp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Carlson, B.E., Yung, Y.L. et al. Scattering and absorbing aerosols in the climate system. Nat Rev Earth Environ 3, 363–379 (2022). https://doi.org/10.1038/s43017-022-00296-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00296-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing