Abstract
Quantum physics experiments produce interesting phenomena such as interference or entanglement, which are the core properties of numerous future quantum technologies. The complex relationship between the setup structure of a quantum experiment and its entanglement properties is essential to fundamental research in quantum optics but is difficult to intuitively understand. We present a deep generative model of quantum optics experiments where a variational autoencoder is trained on a dataset of quantum optics experiment setups. In a series of computational experiments, we investigate the learned representation of our quantum optics variational autoencoder (QOVAE) and its internal understanding of the quantum optics world. We demonstrate that QOVAE learns an interpretable representation of quantum optics experiments and the relationship between the experiment structure and entanglement. We show QOVAE is able to generate novel experiments for highly entangled quantum states with specific distributions that match its training data. QOVAE can learn to generate specific entangled states and efficiently search the space of experiments that produce highly entangled quantum states. Importantly, we are able to interpret how QOVAE structures its latent space, finding curious patterns that we can explain in terms of quantum physics. The results demonstrate how we can use and understand the internal representations of deep generative models in a complex scientific domain. QOVAE and the insights from our investigations can be immediately applied to other physical systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The training data are available via GitHub at https://github.com/danielflamshep/qovae/blob/main/setups.smi (ref. 79).
Code availability
The code is available via GitHub at https://github.com/danielflamshep/qovae (ref. 79). The source code for the Melvin algorithm is available via GitHub at https://github.com/XuemeiGu/MelvinPython.
References
Schrödinger, E. Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555–563 (1935).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).
Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).
Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
Sham, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).
Bong, K.-W. et al. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys. 16, 1199–1205 (2020).
Yin, J. et al. Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017).
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Wang, L., Zou, X. & Mandel, L. Induced coherence without induced emission. Phys. Rev. A 44, 4614 (1991).
Herzog, T., Rarity, J., Weinfurter, H. & Zeilinger, A. Frustrated two-photon creation via interference. Phys. Rev. Lett. 72, 629 (1994).
Menssen, A. J. et al. Distinguishability and many-particle interference. Phys. Rev. Lett. 118, 153603 (2017).
Feng, L.-T. et al. Observation of nonlocal quantum interference between the origins of a four-photon state in a silicon chip. Preprint at https://arxiv.org/abs/2103.14277 (2021).
Krenn, M., Erhard, M. & Zeilinger, A. Computer-inspired quantum experiments. Nat. Rev. Phys. 2, 649 (2020).
Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R. & Zeilinger, A. Automated search for new quantum experiments. Phys. Rev. Lett. 116, 090405 (2016).
Krenn, M., Kottmann, J., Tischler, N. & Aspuru-Guzik, A. Conceptual understanding through efficient automated design of quantum optical experiments. Phys. Rev. X 11, 031044 (2021).
Knott, P. A search algorithm for quantum state engineering and metrology. New J. Phys. 18, 073033 (2016).
Nichols, R., Mineh, L., Rubio, J., Matthews, J. C. F. & Knott, P. A. Designing quantum experiments with a genetic algorithm. Quantum Sci. Technol. 4, 045012 (2019).
O’Driscoll, L., Nichols, R. & P. A., K. A hybrid machine learning algorithm for designing quantum experiments. Quantum Mach. Intell. 1, 5–15 (2019).
Melnikov, A. A. et al. Active learning machine learns to create new quantum experiments. Proc. Natl Acad. Sci. USA 115, 1221–1226 (2018).
Arrazola, J. M. et al. Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Sci. Technol. 4, 024004 (2019).
Salakhutdinov, R. Learning deep generative models. Annu. Rev. Stat. Appl. 2, 361–385 (2015).
Razavi, A., Oord, A. v. d. & Vinyals, O. Generating diverse high-fidelity images with VQ-VAE-2. In Advances in Neural Information Processing Systems (eds Wallach, H. et al.) 14866–14876 (Curran Associates, 2019).
Bowman, S. R. et al. Generating sentences from a continuous space. In Proc. 20th SIGNLL Conference on Computational Natural Language Learning 10–21 (Association for Computational Linguistics, 2015).
Semeniuta, S., Severyn, A. & Barth, E. A hybrid convolutional variational autoencoder for text generation. In Proc. 2017 Conference on Empirical Methods in Natural Language Processing 627–637 (Association for Computational Linguistics, 2017).
Roberts, A., Engel, J., Raffel, C., Hawthorne, C. & Eck, D. A hierarchical latent vector model for learning long-term structure in music. In International Conference on Machine Learning 4364–4373 (PMLR, 2018).
Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In International Conference on Learning Representations 1312–1326 (CoRR, 2014).
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).
Samanta, B. et al. Nevae: a deep generative model for molecular graphs. J. Mach. Learn. Res. 21, 1–33 (2020).
Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In International Conference on Machine Learning 2323–2332 (PMLR, 2018).
Flam-Shepherd, D., Wu, T. C. & Aspuru-Guzik, A. MPGVAE: improved generation of small organic molecules using message passing neural nets. Mach. Learn. Sci. Technol. 2, 045010 (2021).
Jin, W., Barzilay, R. & Jaakkola, T. Hierarchical generation of molecular graphs using structural motifs. In Proc. 37th International Conference on Machine Learning 4839–4848 (PMLR, 2020).
Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).
Liu, Q., Allamanis, M., Brockschmidt, M. & Gaunt, A. Constrained graph variational autoencoders for molecule design. in Advances in Neural Information Processing Systems 31, 7795–7804 (Curran Associates, 2018).
Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).
Higgins, I. et al. beta-VAE: learning basic visual concepts with a constrained variational framework. In ICLR 2017 1–22 (ICLR, 2016).
Iten, R., Metger, T., Wilming, H., del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 010508 (2020).
Bouwmeester, D., J.-W., P., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).
Yao, X.-C. et al. Observation of eight-photon entanglement. Nat. Photon. 6, 225–228 (2012).
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Romero, J., Giovannini, D., Franke-Arnold, S., Barnett, S. M. & Padgett, M. J. Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Phys. Rev. A 86, 012334 (2012).
Krenn, M. et al. Generation and confirmation of a (100 x 100)-dimensional entangled quantum system. Proc. Natl Acad. Sci. USA 111, 6243–6247 (2014).
Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018).
Y.-H., L. et al. Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019).
Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).
Huber, M. & De Vicente, J. I Structure of multidimensional entanglement in multipartite systems. Phys. Rev. Lett. 110, 030501 (2013).
Meurer, A. et al. SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017).
Hamma, A., Santra, S. & Zanardi, P. Quantum entanglement in random physical states. Phys. Rev. Lett. 109, 040502 (2012).
Adler, T. et al. Quantum optical experiments modeled by long short-term memory. Photonics 8, 535 (2021).
Li, Y., Vinyals, O., Dyer, C., Pascanu, R. & Battaglia, P. Learning deep generative models of graphs. In Proc. 35th International Conference on Machine Learning 1–22 (PMLR, 2018).
Scott, D. W. Multivariate Density Estimation: Theory, Practice, and Visualization (John Wiley & Sons, 2015).
Shoemake, K. Animating rotation with quaternion curves. In Proc. 12th Annual Conference on Computer Graphics and Interactive Techniques 245–254 (ACM, 1985).
Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar variational autoencoder. In Proc. 34th International Conference on Machine Learning 1945–1954 (PMLR, 2017).
Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).
Gilpin, L. H. et al. Explaining explanations: an overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) 80–89 (IEEE, 2018).
Erhard, M., Krenn, M. & Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2, 365–381 (2020).
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012).
Krenn, M., Hochrainer, A., Lahiri, M. & Zeilinger, A. Entanglement by path identity. Phys. Rev. Lett. 118, 080401 (2017).
Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).
Wang, L., Hong, C. & Friberg, S. Generation of correlated photons via four-wave mixing in optical fibres. J. Opt. B 3, 346 (2001).
Giordmaine, J. A. & Miller, R. C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973 (1965).
Kingma, D. P., Mohamed, S., Rezende, D. J. & Welling, M. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems 27 (NIPS 2014) 27, 3581–3589 (Curran Associates, 2014).
Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K. & Winther, O. Ladder variational autoencoders. In Advances in Neural Information Processing Systems 1–9 (NIPS, 2016).
Zhao, S., Song, J. & Ermon, S. Learning hierarchical features from generative models. In Proc. 34th International Conference on Machine Learning 4091–4099 (PMLR, 2017).
Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).
Cervera-Lierta, A., Latorre, J. I. & Goyeneche, D. Quantum circuits for maximally entangled states. Phys. Rev. A 100, 022342 (2019).
Helwig, W. and Cui, W. Absolutely maximally entangled states: existence and applications. Preprint at https://arxiv.org/abs/1306.2536 (2013).
Weininger.D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).
Bharti, K. et al. Noisy intermediate-scale quantum (NISQ) algorithms. Rev. Mod. Phys. 94, 15004–15073 (2022).
Giraldi, G. A. Portugal, R. & Thess, R. N. Genetic algorithms and quantum computation. Preprint at https://arxiv.org/abs/cs/0403003 (2004).
Yabuki, T. & Iba, H. Genetic algorithms for quantum circuit design—evolving a simpler teleportation circuit. In Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference 421–425 (Citeseer, 2000).
Anand, A., Degroote, M. & Aspuru-Guzik, A. Natural evolutionary strategies for variational quantum computation. Mach. Learn.: Sci. Technol. 2, 045012 (2021).
Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 14, 1303–1347 (2013).
Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In 12th Symposium on Operating Systems Design and Implementation (OSDI 16) 265–283 (USENIX, 2016).
Flam-Shepherd, D. Python code and data for training and sampling from models. Zenodo https://doi.org/10.5281/zenodo.6499886 (2021).
Nogueira, F. Bayesian optimization: open source constrained global optimization tool for Python. GitHub https://github.com/fmfn/BayesianOptimization (2014).
Acknowledgements
A.A.-G. acknowledges support from the Canada 150 Research Chairs Program, the Canada Industrial Research Chair Program and from Google in the form of a Google Focused Award. M.K. acknowledges support from the FWF (Austrian Science Fund) via Erwin Schrödinger Fellowship no. J4309.
Author information
Authors and Affiliations
Contributions
D.F.-S. conceived the overall project, developed the approach and wrote the paper. D.F.-S. and T.W. designed and performed the investigations. A.C.-L. provided the technical advice. X.G. provided the technical advice and wrote the entanglement calculation code. M.K. built the dataset, provided technical advice and helped design the interpretability investigation and analysed the experiments. A.A.-G. led the project and provided the overall directions. All the authors participated in preparing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Machine Intelligence thanks Michael Hartmann, Sohaib Alam and Patrick Huembeli for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Discussion, Table 1 and Figs. 1–8.
Rights and permissions
About this article
Cite this article
Flam-Shepherd, D., Wu, T.C., Gu, X. et al. Learning interpretable representations of entanglement in quantum optics experiments using deep generative models. Nat Mach Intell 4, 544–554 (2022). https://doi.org/10.1038/s42256-022-00493-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-022-00493-5
This article is cited by
-
Very-large-scale integrated quantum graph photonics
Nature Photonics (2023)
-
On scientific understanding with artificial intelligence
Nature Reviews Physics (2022)