Abstract
Quantifying the topological similarities of different parts of urban road networks enables us to understand urban growth patterns. Although conventional statistics provide useful information about the characteristics of either a single node’s direct neighbours or the entire network, such metrics fail to measure the similarities of subnetworks or capture local, indirect neighbourhood relationships. Here we propose a graph-based machine learning method to quantify the spatial homogeneity of subnetworks. We apply the method to 11,790 urban road networks across 30 cities worldwide to measure the spatial homogeneity of road networks within each city and across different cities. We find that intracity spatial homogeneity is highly associated with socioeconomic status indicators such as gross domestic product and population growth. Moreover, intercity spatial homogeneity values obtained by transferring the model across different cities reveal the intercity similarity of urban network structures originating in Europe, passed on to cities in the United States and Asia. The socioeconomic development and intercity similarity revealed using our method can be leveraged to understand and transfer insights between cities. It also enables us to address urban policy challenges including network planning in rapidly urbanizing areas and regional inequality.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
We used the publicly available road network data from OpenStreetMap (https://www.openstreetmap.org/) via the OSMnx Python package (https://github.com/gboeing/osmnx). We also used images from Google Maps (https://www.google.com/maps) to validate the node merging results. These images are also available to the public. The population data we used comes from https://worldpopulationreview.com/, which is a visualization platform for the open datasets owned by the United Nations. The airport flow data for 21 cities are from the 2019 Annual Airport Traffic Report at https://www.panynj.gov/airports/en/statistics-general-info.html owned by the Port Authority of New York and New Jersey and are also publicly available. The airport flow data for the other nine cities can be accessed from links that are listed in Supplementary Section 4. Both the road network data and socioeconomic data are available at the online data warehouse: https://github.com/jiang719/road-network-predictability.git. The data are available via Zenodo at https://doi.org/10.5281/zenodo.5866593 (ref. 109).
Code availability
Source codes for the training and testing results are available at the online data warehouse: https://github.com/jiang719/road-network-predictability.git. The code is available via Zenodo at https://doi.org/10.5281/zenodo.5866593 (ref. 109).
References
Sun, L., Axhausen, K. W., Lee, D.-H. & Huang, X. Understanding metropolitan patterns of daily encounters. Proc. Natl Acad. Sci. USA 110, 13774–13779 (2013).
Roth, C., Kang, S. M., Batty, M. & Barthélemy, M. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6, e15923 (2011).
SteadieSeifi, M., Dellaert, N. P., Nuijten, W., Van Woensel, T. & Raoufi, R. Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233, 1–15 (2014).
Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).
Arcaute, E. et al. Constructing cities, deconstructing scaling laws. J. R. Soc. Interface 12, 20140745 (2015).
Xu, Y., Olmos, L. E., Abbar, S. & González, M. C. Deconstructing laws of accessibility and facility distribution in cities. Sci. Adv. 6, eabb4112 (2020).
Snellen, D., Borgers, A. & Timmermans, H. Urban form, road network type, and mode choice for frequently conducted activities: a multilevel analysis using quasi-experimental design data. Environ. Plan. Econ. Space 34, 1207–1220 (2002).
Wang, P., Hunter, T., Bayen, A. M., Schechtner, K. & González, M. C. Understanding road usage patterns in urban areas. Sci. Rep. 2, 1001 (2012).
Zhan, X., Ukkusuri, S. V. & Rao, P. S. C. Dynamics of functional failures and recovery in complex road networks. Phys. Rev. E 96, 052301 (2017).
Li, D. et al. Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proc. Natl Acad. Sci. USA 112, 669–672 (2015).
Saberi, M. et al. A simple contagion process describes spreading of traffic jams in urban networks. Nat. Commun. 11, 1616 (2020).
Çolak, S., Lima, A. & González, M. C. Understanding congested travel in urban areas. Nat. Commun. 7, 10793 (2016).
Zhang, L. et al. Scale-free resilience of real traffic jams. Proc. Natl Acad. Sci. USA 116, 8673–8678 (2019).
Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
Strano, E. et al. The scaling structure of the global road network. R. Soc. Open Sci. 4, 170590 (2017).
Molinero, C., Murcio, R. & Arcaute, E. The angular nature of road networks. Sci. Rep. 7, 4312 (2017).
Kalapala, V., Sanwalani, V., Clauset, A. & Moore, C. Scale invariance in road networks. Phys. Rev. E 73, 026130 (2006).
Porta, S., Crucitti, P. & Latora, V. The network analysis of urban streets: a dual approach. Phys. A 369, 853–866 (2006).
Crucitti, P., Latora, V. & Porta, S. Centrality measures in spatial networks of urban streets. Phys. Rev. E 73, 036125 (2006).
Kirkley, A., Barbosa, H., Barthelemy, M. & Ghoshal, G. From the betweenness centrality in street networks to structural invariants in random planar graphs. Nat. Commun. 9, 2501 (2018).
Jiang, B. & Claramunt, C. Topological analysis of urban street networks. Environ. Plan. B 31, 151–162 (2004).
Louf, R. & Barthelemy, M. A typology of street patterns. J. R. Soc. Interface 11, 20140924 (2014).
Lee, M., Barbosa, H., Youn, H., Holme, P. & Ghoshal, G. Morphology of travel routes and the organization of cities. Nat. Commun. 8, 2229 (2017).
Masucci, A. P., Arcaute, E., Hatna, E., Stanilov, K. & Batty, M. On the problem of boundaries and scaling for urban street networks. J. R. Soc. Interface 12, 20150763 (2015).
Lämmer, S., Gehlsen, B. & Helbing, D. Scaling laws in the spatial structure of urban road networks. Phys. A 363, 89–95 (2006).
Depersin, J. & Barthelemy, M. From global scaling to the dynamics of individual cities. Proc. Natl Acad. Sci. USA 115, 2317–2322 (2018).
Thadakamalla, H. P., Albert, R. & Kumara, S. R. T. Search in weighted complex networks. Phys. Rev. E 72, 066128 (2005).
Jeong, J. & Berman, P. Low-cost search in scale-free networks. Phys. Rev. E 75, 036104 (2007).
Ahmadzai, F., Rao, K. M. L. & Ulfat, S. Assessment and modelling of urban road networks using integrated graph of natural road network (a GIS-based approach). J. Urban Manag. 8, 109–125 (2019).
Nigam, R., Sharma, D. K., Jain, S. & Srivastava, G. A local betweenness centrality based forwarding technique for social opportunistic IoT networks. Mob. Netw. Appl. https://doi.org/10.1007/s11036-021-01820-7 (2021).
Porta, S. et al. Street centrality and the location of economic activities in Barcelona. Urban Stud. 49, 1471–1488 (2012).
Mahyar, H., Hasheminezhad, R. & Stanley, H. E. Compressive closeness in networks. Appl. Netw. Sci. 4, 100 (2019).
Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z. & González, M. C. Unravelling daily human mobility motifs. J. R. Soc. Interface 10, 20130246 (2013).
Dey, A. K., Gel, Y. R. & Poor, H. V. What network motifs tell us about resilience and reliability of complex networks. Proc. Natl Acad. Sci. USA 116, 19368–19373 (2019).
Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221–E11230 (2018).
Chandra, A. & Thompson, E. Does public infrastructure affect economic activity? Reg. Sci. Urban Econ. 30, 457–490 (2000).
Molinero, C. & Thurner, S. How the geometry of cities determines urban scaling laws. J. R. Soc. Interface 18, 20200705 (2021). rsif.2020.0705.
Currid, E. & Williams, S. Two cities, five industries: similarities and differences within and between cultural industries in New York and Los Angeles. J. Plan. Educ. Res. 29, 322–335 (2010).
Cheng, F., Kovács, I. A. & Barabási, A.-L. Network-based prediction of drug combinations. Nat. Commun. 10, 1197 (2019).
Jalili, M., Orouskhani, Y., Asgari, M., Alipourfard, N. & Perc, M. Link prediction in multiplex online social networks. R. Soc. Open Sci. 4, 160863 (2017).
Lerique, S., Abitbol, J. L. & Karsai, M. Joint embedding of structure and features via graph convolutional networks. Appl. Netw. Sci. 5, 5 (2020).
Ren, Y., Ercsey-Ravasz, M., Wang, P., González, M. C. & Toroczkai, Z. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges. Nat. Commun. 5, 5347 (2014).
Teney, D., Liu, L. & Van Den Hengel, A. Graph-structured representations for visual question answering. In 2017 IEEE Conference on Computer Vision and Pattern Recognition 2017, 3233–3241 (IEEE, 2017); https://doi.org/10.1109/CVPR.2017.344
Wu, N., Zhao, X. W., Wang, J. & Pan, D. Learning effective road network representation with hierarchical graph neural networks. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 6–14 (ACM, 2020); https://doi.org/10.1145/3394486.3403043
Gebru, T. et al. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proc. Natl Acad. Sci. USA 114, 13108–13113 (2017).
Abitbol, J. L. & Karsai, M. Interpretable socioeconomic status inference from aerial imagery through urban patterns. Nat. Mach. Intell. 2, 684–692 (2020).
Kempinska, K. & Murcio, R. Modelling urban networks using variational autoencoders. Appl. Netw. Sci. 4, 114 (2019).
Peng, X., Chen, X. & Cheng, Y. Urbanization and its Consequences (Eolss, 2011).
Hanson, S. The Geography of Urban Transportation (Guilford, 2004).
Cook, I. R. Mobilising urban policies: the policy transfer of US business improvement districts to England and Wales. Urban Stud. 45, 773–795 (2008).
Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M. & Clauset, A. Stacking models for nearly optimal link prediction in complex networks. Proc. Natl Acad. Sci. USA 117, 23393–23400 (2020).
Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008).
Stanfield, Z., Coskun, M. & Koyuturk, M. Drug response prediction as a link prediction problem. In Proc. 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 638–638 (ACM, 2017); https://doi.org/10.1145/3107411.3107459
Schlichtkrull, M. et al. in The Semantic Web Vol. 10843 (eds Gangemi, A. et al.) 593–607 (Springer International, 2018).
Barrington-Leigh, C. & Millard-Ball, A. A global assessment of street-network sprawl. PLoS ONE 14, e0223078 (2019).
Barrington-Leigh, C. & Millard-Ball, A. Global trends toward urban street-network sprawl. Proc. Natl Acad. Sci. USA 117, 1941–1950 (2020).
Hammack, D. C., Weighley, R. F. & Lukacs, J. Philadelphia: a 300-year history. Am. Hist. Rev. 89, 878 (1984).
Barthelemy, M., Bordin, P., Berestycki, H. & Gribaudi, M. Self-organization versus top-down planning in the evolution of a city. Sci. Rep. 3, 2153 (2013).
Peterson, J. A. The birth of organized city planning in the United States, 1909–1910. J. Am. Plann. Assoc. 75, 123–133 (2009).
Boeing, G. A multi-scale analysis of 27,000 urban street networks: every US city, town, urbanized area, and Zillow neighborhood. Environ. Plan. B 47, 590–608 (2020).
Wang, J. Resilience of self-organised and top-down planned cities—a case study on London and Beijing street networks. PLoS ONE 10, e0141736 (2015).
Giacomin, D. J. & Levinson, D. M. Road network circuity in metropolitan areas. Environ. Plan. B 42, 1040–1053 (2015).
Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O. & Bettencourt, L. M. A. The pre-history of urban scaling. PLoS ONE 9, e87902 (2014).
Whittemore, A. H. Zoning Los Angeles: a brief history of four regimes. Plan. Perspect. 27, 393–415 (2012).
Endoh, T. Historical review of reclamation works in Tokyo port area. J. Geogr. Chigaku Zasshi 113, 534–538 (2004).
Bettencourt, L. M. A. Urban growth and the emergent statistics of cities. Sci. Adv. 6, eaat8812 (2020).
Wei, Y., Zheng, Y. & Yang, Q. Transfer knowledge between cities. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1905–1914 (ACM, 2016); https://doi.org/10.1145/2939672.2939830
Dai, W., Jin, O., Xue, G.-R., Yang, Q. & Yu, Y. EigenTransfer: a unified framework for transfer learning. In Proc. 26th Annual International Conference on Machine Learning 193–200 (ACM, 2009); https://doi.org/10.1145/1553374.1553399
Dong, L., Ratti, C. & Zheng, S. Predicting neighborhoods’ socioeconomic attributes using restaurant data. Proc. Natl Acad. Sci. USA 116, 15447–15452 (2019).
Mandelbrot, B. B. The Fractal Geometry of Nature (W.H. Freeman, 1982).
Falconer, K. J. Techniques in Fractal Geometry (Wiley, 1997).
Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 51, 1119–1122 (1983).
Batty, M. & Longley, P. A. Fractal Cities: A Geometry of Form and Function (Academic, 1994).
Sidqi, Y., Thomas, I., Frankhauser, P. & Retière, N. Comparing fractal indices of electric networks to roads and buildings: the case of Grenoble (France). Phys. Stat. Mech. Appl. 531, 121774 (2019).
Ariza-Villaverde, A. B., Jiménez-Hornero, F. J. & Ravé, E. G. D. Multifractal analysis of axial maps applied to the study of urban morphology. Comput. Environ. Urban Syst. 38, 1–10 (2013).
Makse, H. A., Andrade, J. S., Batty, M., Havlin, S. & Stanley, H. E. Modeling urban growth patterns with correlated percolation. Phys. Rev. E 58, 7054–7062 (1998).
Murcio, R., Masucci, A. P., Arcaute, E. & Batty, M. Multifractal to monofractal evolution of the London street network. Phys. Rev. E 92, 062130 (2015).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.90
Chen, D. et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. Proc. AAAI Conf. Artif. Intell. 34, 3438–3445 (2020).
Berry, B., Goheen, P. & Goldstein, H. Metropolitan Area Definition: A Re-evaluation of Concept and Statistical Practice Vol. 28 (US Department of Commerce, Bureau of the Census, 1968).
Corbane, C. et al. Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data 3, 140–169 (2019).
Rozenfeld, H. D. et al. Laws of population growth. Proc. Natl Acad. Sci. USA 105, 18702–18707 (2008).
Shen, Y. & Batty, M. Delineating the perceived functional regions of London from commuting flows. Environ. Plan. Econ. Space 51, 547–550 (2019).
Long, Y., Shen, Y. & Jin, X. Mapping block-level urban areas for all Chinese cities. Ann. Am. Assoc. Geogr. 106, 96–113 (2016).
Cao, W., Dong, L., Wu, L. & Liu, Y. Quantifying urban areas with multi-source data based on percolation theory. Remote Sens. Environ. 241, 111730 (2020).
Zischg, J., Klinkhamer, C., Zhan, X., Rao, P. S. C. & Sitzenfrei, R. A century of topological coevolution of complex infrastructure networks in an Alpine city. Complexity 2019, 2096749 (2019).
Yabe, T., Tsubouchi, K., Shimizu, T., Sekimoto, Y. & Ukkusuri, S. V. Unsupervised translation via hierarchical anchoring: functional mapping of places across cities. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2841–2851 (ACM, 2020); https://doi.org/10.1145/3394486.3403335
Zhao, J., Li, D., Sanhedrai, H., Cohen, R. & Havlin, S. Spatio-temporal propagation of cascading overload failures in spatially embedded networks. Nat. Commun. 7, 10094 (2016).
Loder, A., Ambühl, L., Menendez, M. & Axhausen, K. W. Understanding traffic capacity of urban networks. Sci. Rep. 9, 16283 (2019).
Zeng, G. et al. Multiple metastable network states in urban traffic. Proc. Natl Acad. Sci. USA 117, 17528–17534 (2020).
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. of the 2019 Conference of the North American Chapter ofthe Association for Computational Linguistics: Human Language Technologies 4171–4186 (NAACL-HLT, 2019); https://doi.org/10.18653/v1/n19-1423
Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. The 5th International Conference on Learning Representations (ICLR, 2017).
Zhang, X. & Zitnik, M. GNNGuard: defending graph neural networks against adversarial attacks. In Advances in Neural Information Processing Systems 9263–9275 (NeurIPS, 2020).
Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017).
Ganin, A. A. et al. Resilience and efficiency in transportation networks. Sci. Adv. 3, e1701079 (2017).
Louail, T. et al. From mobile phone data to the spatial structure of cities. Sci. Rep. 4, 5276 (2015).
Thompson, J. et al. A global analysis of urban design types and road transport injury: an image processing study. Lancet Planet. Health 4, e32–e42 (2020).
Urban Atlas 2018 (Copernicus Land Monitoring Service, accessed 7 March 2022); https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018?tab=mapview
Khiali-Miab, A., van Strien, M. J., Axhausen, K. W. & Grêt-Regamey, A. Combining urban scaling and polycentricity to explain socio-economic status of urban regions. PLoS ONE 14, e0218022 (2019).
Rozenblat, C. Extending the concept of city for delineating large urban regions (LUR) for the cities of the world. Cybergeo https://doi.org/10.4000/cybergeo.35411 (2020).
Ma, S. & Long, Y. Functional urban area delineations of cities on the Chinese mainland using massive Didi ride-hailing records. Cities 97, 102532 (2020).
Yang, B., Yih, W., He, X., Gao, J. & Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. The 3rd International Conference on Learning Representations (ICLR, 2015).
Grover, A. & Leskovec, J. node2vec: scalable feature learning for networks. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (ACM, 2016); https://doi.org/10.1145/2939672.2939754
Ribeiro, L. F. R., Saverese, P. H. P. & Figueiredo, D. R. struc2vec: learning node representations from structural identity. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 385–394 (ACM, 2017); https://doi.org/10.1145/3097983.3098061
Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems 1024–1034 (NIPS, 2017).
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. The 5th International Conference on Learning Representations (ICLR, 2017).
Veličković, P. et al. Graph attention networks. The 6th International Conference on Learning Representations (ICLR, 2018).
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. The 3rd International Conference on Learning Representations (ICLR, 2015).
Xue, J. et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks [Data set]. Zenodo https://doi.org/10.5281/zenodo.5866593 (2022).
Acknowledgements
We thank S. Rao from Purdue University for discussions about the comparison between the spatial homogeneity metric and existing network metrics. S.L. acknowledges support from the Ross-Lynn fellowship, Purdue University. T.Y. is partly funded by National Science Foundation (grant number 1638311).
Author information
Authors and Affiliations
Contributions
J.X., T.Y., S.V.U. and J.M. proposed the question. J.X., N.J., S.L., Q.P. and J.M. designed the research. N.J. trained and tested the GNN models. S.L. and Q.P. performed the intracity analysis. N.J. and J.X. conducted the intercity analysis. J.X. and J.M. drew the figures. J.X., T.Y., S.V.U. and J.M. wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Machine Intelligence thanks Martin Fleischmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–28 and Tables 1–5.
Rights and permissions
About this article
Cite this article
Xue, J., Jiang, N., Liang, S. et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nat Mach Intell 4, 246–257 (2022). https://doi.org/10.1038/s42256-022-00462-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-022-00462-y