Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantifying the spatial homogeneity of urban road networks via graph neural networks

A preprint version of the article is available at arXiv.

Abstract

Quantifying the topological similarities of different parts of urban road networks enables us to understand urban growth patterns. Although conventional statistics provide useful information about the characteristics of either a single node’s direct neighbours or the entire network, such metrics fail to measure the similarities of subnetworks or capture local, indirect neighbourhood relationships. Here we propose a graph-based machine learning method to quantify the spatial homogeneity of subnetworks. We apply the method to 11,790 urban road networks across 30 cities worldwide to measure the spatial homogeneity of road networks within each city and across different cities. We find that intracity spatial homogeneity is highly associated with socioeconomic status indicators such as gross domestic product and population growth. Moreover, intercity spatial homogeneity values obtained by transferring the model across different cities reveal the intercity similarity of urban network structures originating in Europe, passed on to cities in the United States and Asia. The socioeconomic development and intercity similarity revealed using our method can be leveraged to understand and transfer insights between cities. It also enables us to address urban policy challenges including network planning in rapidly urbanizing areas and regional inequality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial homogeneity.
Fig. 2: Interpretation of the spatial homogeneity via road network types.
Fig. 3: Interpretation of the spatial homogeneity via network irregularity.
Fig. 4: Socioeconomic development revealed by the intracity road network spatial homogeneity.
Fig. 5: Intercity similarity revealed by the intercity road network spatial homogeneity.
Fig. 6: Historical urban insights revealed using intercity spatial homogeneity.

Similar content being viewed by others

Data availability

We used the publicly available road network data from OpenStreetMap (https://www.openstreetmap.org/) via the OSMnx Python package (https://github.com/gboeing/osmnx). We also used images from Google Maps (https://www.google.com/maps) to validate the node merging results. These images are also available to the public. The population data we used comes from https://worldpopulationreview.com/, which is a visualization platform for the open datasets owned by the United Nations. The airport flow data for 21 cities are from the 2019 Annual Airport Traffic Report at https://www.panynj.gov/airports/en/statistics-general-info.html owned by the Port Authority of New York and New Jersey and are also publicly available. The airport flow data for the other nine cities can be accessed from links that are listed in Supplementary Section 4. Both the road network data and socioeconomic data are available at the online data warehouse: https://github.com/jiang719/road-network-predictability.git. The data are available via Zenodo at https://doi.org/10.5281/zenodo.5866593 (ref. 109).

Code availability

Source codes for the training and testing results are available at the online data warehouse: https://github.com/jiang719/road-network-predictability.git. The code is available via Zenodo at https://doi.org/10.5281/zenodo.5866593 (ref. 109).

References

  1. Sun, L., Axhausen, K. W., Lee, D.-H. & Huang, X. Understanding metropolitan patterns of daily encounters. Proc. Natl Acad. Sci. USA 110, 13774–13779 (2013).

    Article  Google Scholar 

  2. Roth, C., Kang, S. M., Batty, M. & Barthélemy, M. Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6, e15923 (2011).

    Article  Google Scholar 

  3. SteadieSeifi, M., Dellaert, N. P., Nuijten, W., Van Woensel, T. & Raoufi, R. Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233, 1–15 (2014).

    Article  MATH  Google Scholar 

  4. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).

    Article  Google Scholar 

  5. Arcaute, E. et al. Constructing cities, deconstructing scaling laws. J. R. Soc. Interface 12, 20140745 (2015).

    Article  Google Scholar 

  6. Xu, Y., Olmos, L. E., Abbar, S. & González, M. C. Deconstructing laws of accessibility and facility distribution in cities. Sci. Adv. 6, eabb4112 (2020).

    Article  Google Scholar 

  7. Snellen, D., Borgers, A. & Timmermans, H. Urban form, road network type, and mode choice for frequently conducted activities: a multilevel analysis using quasi-experimental design data. Environ. Plan. Econ. Space 34, 1207–1220 (2002).

    Article  Google Scholar 

  8. Wang, P., Hunter, T., Bayen, A. M., Schechtner, K. & González, M. C. Understanding road usage patterns in urban areas. Sci. Rep. 2, 1001 (2012).

    Article  Google Scholar 

  9. Zhan, X., Ukkusuri, S. V. & Rao, P. S. C. Dynamics of functional failures and recovery in complex road networks. Phys. Rev. E 96, 052301 (2017).

    Article  Google Scholar 

  10. Li, D. et al. Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proc. Natl Acad. Sci. USA 112, 669–672 (2015).

    Article  Google Scholar 

  11. Saberi, M. et al. A simple contagion process describes spreading of traffic jams in urban networks. Nat. Commun. 11, 1616 (2020).

    Article  Google Scholar 

  12. Çolak, S., Lima, A. & González, M. C. Understanding congested travel in urban areas. Nat. Commun. 7, 10793 (2016).

    Article  Google Scholar 

  13. Zhang, L. et al. Scale-free resilience of real traffic jams. Proc. Natl Acad. Sci. USA 116, 8673–8678 (2019).

    Article  Google Scholar 

  14. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  Google Scholar 

  15. Strano, E. et al. The scaling structure of the global road network. R. Soc. Open Sci. 4, 170590 (2017).

    Article  Google Scholar 

  16. Molinero, C., Murcio, R. & Arcaute, E. The angular nature of road networks. Sci. Rep. 7, 4312 (2017).

    Article  Google Scholar 

  17. Kalapala, V., Sanwalani, V., Clauset, A. & Moore, C. Scale invariance in road networks. Phys. Rev. E 73, 026130 (2006).

    Article  Google Scholar 

  18. Porta, S., Crucitti, P. & Latora, V. The network analysis of urban streets: a dual approach. Phys. A 369, 853–866 (2006).

    Article  MATH  Google Scholar 

  19. Crucitti, P., Latora, V. & Porta, S. Centrality measures in spatial networks of urban streets. Phys. Rev. E 73, 036125 (2006).

    Article  MATH  Google Scholar 

  20. Kirkley, A., Barbosa, H., Barthelemy, M. & Ghoshal, G. From the betweenness centrality in street networks to structural invariants in random planar graphs. Nat. Commun. 9, 2501 (2018).

    Article  Google Scholar 

  21. Jiang, B. & Claramunt, C. Topological analysis of urban street networks. Environ. Plan. B 31, 151–162 (2004).

    Article  Google Scholar 

  22. Louf, R. & Barthelemy, M. A typology of street patterns. J. R. Soc. Interface 11, 20140924 (2014).

    Article  Google Scholar 

  23. Lee, M., Barbosa, H., Youn, H., Holme, P. & Ghoshal, G. Morphology of travel routes and the organization of cities. Nat. Commun. 8, 2229 (2017).

    Article  Google Scholar 

  24. Masucci, A. P., Arcaute, E., Hatna, E., Stanilov, K. & Batty, M. On the problem of boundaries and scaling for urban street networks. J. R. Soc. Interface 12, 20150763 (2015).

    Article  Google Scholar 

  25. Lämmer, S., Gehlsen, B. & Helbing, D. Scaling laws in the spatial structure of urban road networks. Phys. A 363, 89–95 (2006).

    Article  Google Scholar 

  26. Depersin, J. & Barthelemy, M. From global scaling to the dynamics of individual cities. Proc. Natl Acad. Sci. USA 115, 2317–2322 (2018).

    Article  Google Scholar 

  27. Thadakamalla, H. P., Albert, R. & Kumara, S. R. T. Search in weighted complex networks. Phys. Rev. E 72, 066128 (2005).

    Article  Google Scholar 

  28. Jeong, J. & Berman, P. Low-cost search in scale-free networks. Phys. Rev. E 75, 036104 (2007).

    Article  Google Scholar 

  29. Ahmadzai, F., Rao, K. M. L. & Ulfat, S. Assessment and modelling of urban road networks using integrated graph of natural road network (a GIS-based approach). J. Urban Manag. 8, 109–125 (2019).

    Article  Google Scholar 

  30. Nigam, R., Sharma, D. K., Jain, S. & Srivastava, G. A local betweenness centrality based forwarding technique for social opportunistic IoT networks. Mob. Netw. Appl. https://doi.org/10.1007/s11036-021-01820-7 (2021).

  31. Porta, S. et al. Street centrality and the location of economic activities in Barcelona. Urban Stud. 49, 1471–1488 (2012).

    Article  Google Scholar 

  32. Mahyar, H., Hasheminezhad, R. & Stanley, H. E. Compressive closeness in networks. Appl. Netw. Sci. 4, 100 (2019).

    Article  Google Scholar 

  33. Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z. & González, M. C. Unravelling daily human mobility motifs. J. R. Soc. Interface 10, 20130246 (2013).

    Article  Google Scholar 

  34. Dey, A. K., Gel, Y. R. & Poor, H. V. What network motifs tell us about resilience and reliability of complex networks. Proc. Natl Acad. Sci. USA 116, 19368–19373 (2019).

    Article  Google Scholar 

  35. Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221–E11230 (2018).

    Article  Google Scholar 

  36. Chandra, A. & Thompson, E. Does public infrastructure affect economic activity? Reg. Sci. Urban Econ. 30, 457–490 (2000).

    Article  Google Scholar 

  37. Molinero, C. & Thurner, S. How the geometry of cities determines urban scaling laws. J. R. Soc. Interface 18, 20200705 (2021). rsif.2020.0705.

    Article  Google Scholar 

  38. Currid, E. & Williams, S. Two cities, five industries: similarities and differences within and between cultural industries in New York and Los Angeles. J. Plan. Educ. Res. 29, 322–335 (2010).

    Article  Google Scholar 

  39. Cheng, F., Kovács, I. A. & Barabási, A.-L. Network-based prediction of drug combinations. Nat. Commun. 10, 1197 (2019).

    Article  Google Scholar 

  40. Jalili, M., Orouskhani, Y., Asgari, M., Alipourfard, N. & Perc, M. Link prediction in multiplex online social networks. R. Soc. Open Sci. 4, 160863 (2017).

    Article  MathSciNet  Google Scholar 

  41. Lerique, S., Abitbol, J. L. & Karsai, M. Joint embedding of structure and features via graph convolutional networks. Appl. Netw. Sci. 5, 5 (2020).

    Article  Google Scholar 

  42. Ren, Y., Ercsey-Ravasz, M., Wang, P., González, M. C. & Toroczkai, Z. Predicting commuter flows in spatial networks using a radiation model based on temporal ranges. Nat. Commun. 5, 5347 (2014).

    Article  Google Scholar 

  43. Teney, D., Liu, L. & Van Den Hengel, A. Graph-structured representations for visual question answering. In 2017 IEEE Conference on Computer Vision and Pattern Recognition 2017, 3233–3241 (IEEE, 2017); https://doi.org/10.1109/CVPR.2017.344

  44. Wu, N., Zhao, X. W., Wang, J. & Pan, D. Learning effective road network representation with hierarchical graph neural networks. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 6–14 (ACM, 2020); https://doi.org/10.1145/3394486.3403043

  45. Gebru, T. et al. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proc. Natl Acad. Sci. USA 114, 13108–13113 (2017).

    Article  Google Scholar 

  46. Abitbol, J. L. & Karsai, M. Interpretable socioeconomic status inference from aerial imagery through urban patterns. Nat. Mach. Intell. 2, 684–692 (2020).

    Article  Google Scholar 

  47. Kempinska, K. & Murcio, R. Modelling urban networks using variational autoencoders. Appl. Netw. Sci. 4, 114 (2019).

    Article  Google Scholar 

  48. Peng, X., Chen, X. & Cheng, Y. Urbanization and its Consequences (Eolss, 2011).

  49. Hanson, S. The Geography of Urban Transportation (Guilford, 2004).

  50. Cook, I. R. Mobilising urban policies: the policy transfer of US business improvement districts to England and Wales. Urban Stud. 45, 773–795 (2008).

    Article  Google Scholar 

  51. Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M. & Clauset, A. Stacking models for nearly optimal link prediction in complex networks. Proc. Natl Acad. Sci. USA 117, 23393–23400 (2020).

    Article  Google Scholar 

  52. Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008).

    Article  Google Scholar 

  53. Stanfield, Z., Coskun, M. & Koyuturk, M. Drug response prediction as a link prediction problem. In Proc. 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics 638–638 (ACM, 2017); https://doi.org/10.1145/3107411.3107459

  54. Schlichtkrull, M. et al. in The Semantic Web Vol. 10843 (eds Gangemi, A. et al.) 593–607 (Springer International, 2018).

  55. Barrington-Leigh, C. & Millard-Ball, A. A global assessment of street-network sprawl. PLoS ONE 14, e0223078 (2019).

    Article  Google Scholar 

  56. Barrington-Leigh, C. & Millard-Ball, A. Global trends toward urban street-network sprawl. Proc. Natl Acad. Sci. USA 117, 1941–1950 (2020).

    Article  Google Scholar 

  57. Hammack, D. C., Weighley, R. F. & Lukacs, J. Philadelphia: a 300-year history. Am. Hist. Rev. 89, 878 (1984).

    Article  Google Scholar 

  58. Barthelemy, M., Bordin, P., Berestycki, H. & Gribaudi, M. Self-organization versus top-down planning in the evolution of a city. Sci. Rep. 3, 2153 (2013).

    Article  Google Scholar 

  59. Peterson, J. A. The birth of organized city planning in the United States, 1909–1910. J. Am. Plann. Assoc. 75, 123–133 (2009).

    Article  Google Scholar 

  60. Boeing, G. A multi-scale analysis of 27,000 urban street networks: every US city, town, urbanized area, and Zillow neighborhood. Environ. Plan. B 47, 590–608 (2020).

    Google Scholar 

  61. Wang, J. Resilience of self-organised and top-down planned cities—a case study on London and Beijing street networks. PLoS ONE 10, e0141736 (2015).

    Article  Google Scholar 

  62. Giacomin, D. J. & Levinson, D. M. Road network circuity in metropolitan areas. Environ. Plan. B 42, 1040–1053 (2015).

    Article  Google Scholar 

  63. Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O. & Bettencourt, L. M. A. The pre-history of urban scaling. PLoS ONE 9, e87902 (2014).

    Article  Google Scholar 

  64. Whittemore, A. H. Zoning Los Angeles: a brief history of four regimes. Plan. Perspect. 27, 393–415 (2012).

    Article  Google Scholar 

  65. Endoh, T. Historical review of reclamation works in Tokyo port area. J. Geogr. Chigaku Zasshi 113, 534–538 (2004).

    Article  Google Scholar 

  66. Bettencourt, L. M. A. Urban growth and the emergent statistics of cities. Sci. Adv. 6, eaat8812 (2020).

    Article  Google Scholar 

  67. Wei, Y., Zheng, Y. & Yang, Q. Transfer knowledge between cities. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1905–1914 (ACM, 2016); https://doi.org/10.1145/2939672.2939830

  68. Dai, W., Jin, O., Xue, G.-R., Yang, Q. & Yu, Y. EigenTransfer: a unified framework for transfer learning. In Proc. 26th Annual International Conference on Machine Learning 193–200 (ACM, 2009); https://doi.org/10.1145/1553374.1553399

  69. Dong, L., Ratti, C. & Zheng, S. Predicting neighborhoods’ socioeconomic attributes using restaurant data. Proc. Natl Acad. Sci. USA 116, 15447–15452 (2019).

    Article  Google Scholar 

  70. Mandelbrot, B. B. The Fractal Geometry of Nature (W.H. Freeman, 1982).

  71. Falconer, K. J. Techniques in Fractal Geometry (Wiley, 1997).

  72. Meakin, P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 51, 1119–1122 (1983).

    Article  Google Scholar 

  73. Batty, M. & Longley, P. A. Fractal Cities: A Geometry of Form and Function (Academic, 1994).

  74. Sidqi, Y., Thomas, I., Frankhauser, P. & Retière, N. Comparing fractal indices of electric networks to roads and buildings: the case of Grenoble (France). Phys. Stat. Mech. Appl. 531, 121774 (2019).

    Article  Google Scholar 

  75. Ariza-Villaverde, A. B., Jiménez-Hornero, F. J. & Ravé, E. G. D. Multifractal analysis of axial maps applied to the study of urban morphology. Comput. Environ. Urban Syst. 38, 1–10 (2013).

    Article  Google Scholar 

  76. Makse, H. A., Andrade, J. S., Batty, M., Havlin, S. & Stanley, H. E. Modeling urban growth patterns with correlated percolation. Phys. Rev. E 58, 7054–7062 (1998).

    Article  Google Scholar 

  77. Murcio, R., Masucci, A. P., Arcaute, E. & Batty, M. Multifractal to monofractal evolution of the London street network. Phys. Rev. E 92, 062130 (2015).

    Article  Google Scholar 

  78. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.90

  79. Chen, D. et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. Proc. AAAI Conf. Artif. Intell. 34, 3438–3445 (2020).

    Google Scholar 

  80. Berry, B., Goheen, P. & Goldstein, H. Metropolitan Area Definition: A Re-evaluation of Concept and Statistical Practice Vol. 28 (US Department of Commerce, Bureau of the Census, 1968).

  81. Corbane, C. et al. Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data 3, 140–169 (2019).

    Article  Google Scholar 

  82. Rozenfeld, H. D. et al. Laws of population growth. Proc. Natl Acad. Sci. USA 105, 18702–18707 (2008).

    Article  Google Scholar 

  83. Shen, Y. & Batty, M. Delineating the perceived functional regions of London from commuting flows. Environ. Plan. Econ. Space 51, 547–550 (2019).

    Article  Google Scholar 

  84. Long, Y., Shen, Y. & Jin, X. Mapping block-level urban areas for all Chinese cities. Ann. Am. Assoc. Geogr. 106, 96–113 (2016).

    Google Scholar 

  85. Cao, W., Dong, L., Wu, L. & Liu, Y. Quantifying urban areas with multi-source data based on percolation theory. Remote Sens. Environ. 241, 111730 (2020).

    Article  Google Scholar 

  86. Zischg, J., Klinkhamer, C., Zhan, X., Rao, P. S. C. & Sitzenfrei, R. A century of topological coevolution of complex infrastructure networks in an Alpine city. Complexity 2019, 2096749 (2019).

    Article  Google Scholar 

  87. Yabe, T., Tsubouchi, K., Shimizu, T., Sekimoto, Y. & Ukkusuri, S. V. Unsupervised translation via hierarchical anchoring: functional mapping of places across cities. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2841–2851 (ACM, 2020); https://doi.org/10.1145/3394486.3403335

  88. Zhao, J., Li, D., Sanhedrai, H., Cohen, R. & Havlin, S. Spatio-temporal propagation of cascading overload failures in spatially embedded networks. Nat. Commun. 7, 10094 (2016).

    Article  Google Scholar 

  89. Loder, A., Ambühl, L., Menendez, M. & Axhausen, K. W. Understanding traffic capacity of urban networks. Sci. Rep. 9, 16283 (2019).

    Article  Google Scholar 

  90. Zeng, G. et al. Multiple metastable network states in urban traffic. Proc. Natl Acad. Sci. USA 117, 17528–17534 (2020).

    Article  Google Scholar 

  91. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. of the 2019 Conference of the North American Chapter ofthe Association for Computational Linguistics: Human Language Technologies 4171–4186 (NAACL-HLT, 2019); https://doi.org/10.18653/v1/n19-1423

  92. Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. The 5th International Conference on Learning Representations (ICLR, 2017).

  93. Zhang, X. & Zitnik, M. GNNGuard: defending graph neural networks against adversarial attacks. In Advances in Neural Information Processing Systems 9263–9275 (NeurIPS, 2020).

  94. Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017).

    Article  Google Scholar 

  95. Ganin, A. A. et al. Resilience and efficiency in transportation networks. Sci. Adv. 3, e1701079 (2017).

    Article  Google Scholar 

  96. Louail, T. et al. From mobile phone data to the spatial structure of cities. Sci. Rep. 4, 5276 (2015).

    Article  Google Scholar 

  97. Thompson, J. et al. A global analysis of urban design types and road transport injury: an image processing study. Lancet Planet. Health 4, e32–e42 (2020).

    Article  Google Scholar 

  98. Urban Atlas 2018 (Copernicus Land Monitoring Service, accessed 7 March 2022); https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018?tab=mapview

  99. Khiali-Miab, A., van Strien, M. J., Axhausen, K. W. & Grêt-Regamey, A. Combining urban scaling and polycentricity to explain socio-economic status of urban regions. PLoS ONE 14, e0218022 (2019).

    Article  Google Scholar 

  100. Rozenblat, C. Extending the concept of city for delineating large urban regions (LUR) for the cities of the world. Cybergeo https://doi.org/10.4000/cybergeo.35411 (2020).

  101. Ma, S. & Long, Y. Functional urban area delineations of cities on the Chinese mainland using massive Didi ride-hailing records. Cities 97, 102532 (2020).

    Article  Google Scholar 

  102. Yang, B., Yih, W., He, X., Gao, J. & Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. The 3rd International Conference on Learning Representations (ICLR, 2015).

  103. Grover, A. & Leskovec, J. node2vec: scalable feature learning for networks. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (ACM, 2016); https://doi.org/10.1145/2939672.2939754

  104. Ribeiro, L. F. R., Saverese, P. H. P. & Figueiredo, D. R. struc2vec: learning node representations from structural identity. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 385–394 (ACM, 2017); https://doi.org/10.1145/3097983.3098061

  105. Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems 1024–1034 (NIPS, 2017).

  106. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. The 5th International Conference on Learning Representations (ICLR, 2017).

  107. Veličković, P. et al. Graph attention networks. The 6th International Conference on Learning Representations (ICLR, 2018).

  108. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. The 3rd International Conference on Learning Representations (ICLR, 2015).

  109. Xue, J. et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks [Data set]. Zenodo https://doi.org/10.5281/zenodo.5866593 (2022).

Download references

Acknowledgements

We thank S. Rao from Purdue University for discussions about the comparison between the spatial homogeneity metric and existing network metrics. S.L. acknowledges support from the Ross-Lynn fellowship, Purdue University. T.Y. is partly funded by National Science Foundation (grant number 1638311).

Author information

Authors and Affiliations

Authors

Contributions

J.X., T.Y., S.V.U. and J.M. proposed the question. J.X., N.J., S.L., Q.P. and J.M. designed the research. N.J. trained and tested the GNN models. S.L. and Q.P. performed the intracity analysis. N.J. and J.X. conducted the intercity analysis. J.X. and J.M. drew the figures. J.X., T.Y., S.V.U. and J.M. wrote the paper.

Corresponding authors

Correspondence to Satish V. Ukkusuri or Jianzhu Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Martin Fleischmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Tables 1–5.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Jiang, N., Liang, S. et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nat Mach Intell 4, 246–257 (2022). https://doi.org/10.1038/s42256-022-00462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-022-00462-y

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics