Abstract
The traditional goal of quantitative analytics is to find simple, transparent models that generate explainable insights. In recent years, large-scale data acquisition enabled, for instance, by brain scanning and genomic profiling with microarray-type techniques, has prompted a wave of statistical inventions and innovative applications. Here we review some of the main trends in learning from ‘big data’ and provide examples from imaging neuroscience. Some main messages we find are that modern analysis approaches (1) tame complex data with parameter regularization and dimensionality-reduction strategies, (2) are increasingly backed up by empirical model validations rather than justified by mathematical proofs, (3) will compare against and build on open data and consortium repositories, as well as (4) often embrace more elaborate, less interpretable models to maximize prediction accuracy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Efron, B. Large-scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction Vol. 1 (Cambridge Univ. Press, 2012).
Nature 539, 467–468 (2016).
Efron, B. & Hastie, T. Computer-Age Statistical Inference (Cambridge Univ. Press, 2016).
Jordan, M. I. On statistics, computation and scalability. Bernoulli 19, 1378–1390 (2013).
Donoho, D. 50 years of data science. J. Comput. Graph. Stat. 26, 745–766 (2017).
Casella, G. & Berger, R. L. Statistical Inference Vol. 2 (Duxbury, 2002).
Efron, B. & Tibshirani, R. J. Statistical data analysis in the computer age. Science 253, 390–395 (1991).
Nuzzo, R. Scientific method: statistical errors. Nature 506, 150–152 (2014).
Wasserstein, R. L. & Lazar, N. A. The ASA’s statement on P-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).
Blei, D. M. & Smyth, P. Science and data science. Proc. Natl Acad. Sci. USA 114, 8689–8692 (2017).
Halevy, A., Norvig, P. & Pereira, F. The unreasonable effectiveness of data. IEEE Intell. Syst. 24, 8–12 (2009).
Breiman, L. Statistical modeling: the two cultures. Stat. Sci. 16, 199–231 (2001).
Jordan, M. I. et al. Frontiers in Massive Data Analysis (The National Academies Press, 2013).
Bzdok, D. & Yeo, B. T. T. Inference in the age of big data: future perspectives on neuroscience. NeuroImage 155, 549–564 (2017).
Smith, S. M. & Nichols, T. E. Statistical challenges in “big data” human neuroimaging. Neuron 97, 263–268 (2018).
Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).
Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).
McIntosh, A. R. & Mišić, B. Multivariate statistical analyses for neuroimaging data. Annu. Rev. Psychol. 64, 499–525 (2013).
McIntosh, A., Bookstein, F., Haxby, J. V. & Grady, C. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3, 143–157 (1996).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2001).
Giraud, C. Introduction to High-dimensional Statistics (CRC Press, 2014).
Hastie, T., Tibshirani, R. & Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations (CRC Press, 2015).
Mohri, M., Talwalkar, A. & Rostamizadeh, A. Foundations of Machine Learning (Adaptive Computation and Machine Learning Series, MIT Press, 2012).
Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge Univ. Press, 2014).
McElreath, R. Statistical Rethinking (Chapman & Hall/CRC, 2015).
Kruschke, J. K. Doing Bayesian Data Analysis (Elsevier, 2011).
Wipf, D. P. & Nagarajan, S. S. Sparse estimation using general likelihoods and non-factorial priors. In Advances in Neural Information Processing Systems 1625–1632 (NIPS, 2008).
Chen, G. et al. Handling multiplicity in neuroimaging through Bayesian lenses with multilevel modeling. Neuroinformatics https://doi.org/10.1007/s12021-018-9409-6 (2018).
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis Vol. 2 (Chapman & Hall/CRC, 2014).
MacKay, D. J. C. Information Theory, Inference and Learning Algorithms (Cambridge Univ. Press, 2003).
Smith, S. M. et al. A positive–negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).
Witten, D. M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515–534 (2009).
Virtanen, S., Klami, A. & Kaski, S. Bayesian CCA via group sparsity. In Proc. 28th International Conference on International Conference on Machine Learning (eds Getoor, L. & Scheffer, T.) 457–464 (Omnipress, 2011).
Andrew, G., Arora, R., Bilmes, J. & Livescu, K. Deep canonical correlation analysis. In International Conference on Machine Learning 1247–1255 (PMLR, 2013).
Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110 (2014).
Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1994).
Kernbach, J. M. et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc. Natl Acad. Sci. USA 115, 12295–12300 (2018).
Bzdok, D. et al. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. NeuroImage 81, 381–392 (2013).
Wang, H.-T. et al. Dimensions of experience: exploring the heterogeneity of the wandering mind. Psychol. Sci. 29, 56–71 (2018).
Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. Preprint at arXiv https://arxiv.org/abs/1611.03530 (2016).
Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Series B 36, 111–147 (1974).
Geisser, S. The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70, 320–328 (1975).
Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).
Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).
Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523 (2016).
Berkson, J. Some difficulties of interpretation encountered in the application of the chi-square test. J. Am. Stat. Assoc. 33, 526–536 (1938).
Bzdok, D. Classical statistics and statistical learning in imaging neuroscience. Front. Neurosci. 11, 543 (2017).
Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).
Winkler, A. M. et al. Non‐parametric combination and related permutation tests for neuroimaging. Hum. Brain Mapp. 37, 1486–1511 (2016).
Ge, T., Yeo, B. T. T. & Winkler, A. A brief overview of permutation testing with examples. Organization for Human Brain Mapping https://www.ohbmbrainmappingblog.com/blog/a-brief-overview-of-permutation-testing-with-examples (2018).
Varoquaux, G. Cross-validation failure: small sample sizes lead to large error bars. NeuroImage 180, 68–77 (2017).
Goodfellow, I. J., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
Medland, S. E., Jahanshad, N., Neale, B. M. & Thompson, P. M. Whole-genome analyses of whole-brain data: working within an expanded search space. Nat. Neurosci. 17, 791–800 (2014).
Leonelli, S. Data-centric Biology: A Philosophical Study (Univ. Chicago Press, 2016).
Poldrack, R. A. & Gorgolewski, K. J. Making big data open: data sharing in neuroimaging. Nat. Neurosci. 17, 1510–1517 (2014).
Bron, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage 111, 562–579 (2015).
Sarica, A., Cerasa, A., Quattrone, A. & Calhoun, V. Editorial on special issue: machine learning on MCI. J. Neurosci. methods 302, 1 (2018).
Arbabshirani, M. R., Plis, S., Sui, J. & Calhoun, V. D. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–165 (2017).
Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).
Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. NeuroImage 62, 2222–2231 (2012).
Petkova, E. et al. Statistical analysis plan for stage 1 EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care) study. Contemp. Clin. Trials Commun. 6, 22–30 (2017).
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Shmueli, G. To explain or to predict? Stat. Sci. 25, 289–310 (2010).
Harrell, F. Is medicine mesmerized by machine learning? Statistical Thinking http://www.fharrell.com/post/medml/ (2019).
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 4765–4774 (NIPS, 2017).
Chen, J., Song, L., Wainwright, M. J. & Jordan, M. I. Learning to explain: an information-theoretic perspective on model interpretation. Preprint at https://arxiv.org/abs/1802.07814 (2018).
Szucs, D. & Ioannidis, J. When null hypothesis significance testing is unsuitable for research: a reassessment. Front. Hum. Neurosci. 11, 390 (2017).
Bzdok, D. & Ioannidis, J. P. A. Exploration, inference and prediction in neuroscience and biomedicine. Trends Neurosci. 42, 251–262 (2019).
Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect (Basic Books, 2018).
Efron, B. Why isn’t everyone a Bayesian? Am. Stat. 40, 1–5 (1986).
Norvig, P. On chomsky and the two cultures of statistical learning. Peter Norvig http://norvig.com/chomsky.html (2011).
O’Neil, C. Weapons of Math Destruction. How Big Data Increases Inequality and Threatens Democracy (Crown, 2016).
Haynes, J.-D. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87, 257–270 (2015).
Henke, N. et al. The Age of Analytics: Competing in a Data-driven World Technical Report (McKinsey Global Institute, 2016).
Hoyos-Idrobo, A., Varoquaux, G., Schwartz, Y. & Thirion, B. FReM—scalable and stable decoding with fast regularized ensemble of models. NeuroImage 180, 160–172 (2018).
Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2016).
Friston, K. J. et al. Classical and Bayesian inference in neuroimaging: applications. NeuroImage 16, 484–512 (2002).
Friston, K. J. et al. Classical and Bayesian inference in neuroimaging: theory. NeuroImage 16, 465–483 (2002).
Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).
Friston, K. J., Liddle, P. F., Frith, C. D., Hirsch, S. R. & Frackowiak, R. S. J. The left medial temporal region and schizophrenia. Brain 115, 367–382 (1992).
Varoquaux, G. et al. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage 145, 166–179 (2017).
Pereira, F., Mitchell, T. & Botvinick, M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45, 199–209 (2009).
Allen, E. A., Erhardt, E. B. & Calhoun, V. D. Data visualization in the neurosciences: overcoming the curse of dimensionality. Neuron 74, 603–608 (2012).
Marblestone, A. H., Wayne, G. & Kording, K. P. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10, 94 (2016).
Plis, S. M. et al. Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 299 (2014).
Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017).
Doria, V. et al. Emergence of resting state networks in the preterm human brain. Proc. Natl Acad. Sci. USA 107, 20015–20020 (2010).
Sui, J. et al. A CCA+ ICA based model for multi-task brain imaging data fusion and its application to schizophrenia. NeuroImage 51, 123–134 (2010).
Jonas, E. & Kording, K. P. Could a neuroscientist understand a microprocessor? PLoS Comput. Biol. 13, e1005268 (2017).
Dai, T. & Guo, Y., Alzheimer’s Disease Neuroimaging Initiative. Predicting individual brain functional connectivity using a Bayesian hierarchical model. NeuroImage 147, 772–787 (2017).
Eickhoff, S. B., Thirion, B., Varoquaux, G. & Bzdok, D. Connectivity-based parcellation: critique and implications. Hum. Brain Mapp. 36, 4771–4792 (2015).
Woolrich, M. W. Bayesian inference in FMRI. NeuroImage 62, 801–810 (2012).
Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).
Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping. Proc. Natl Acad. Sci. USA 103, 3863–3868 (2006).
Rasmussen, P. M., Hansen, L. K., Madsen, K. H., Churchill, N. W. & Strother, S. C. Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognit. 45, 2085–2100 (2012).
Baldassarre, L., Pontil, M. & Mourão-Miranda, J. Sparsity is better with stability: combining accuracy and stability for model selection in brain decoding. Front. Neurosci. 11, 62 (2017).
Woo, C. W., Krishnan, A. & Wager, T. D. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage 91, 412–419 (2014).
Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bzdok, D., Nichols, T.E. & Smith, S.M. Towards algorithmic analytics for large-scale datasets. Nat Mach Intell 1, 296–306 (2019). https://doi.org/10.1038/s42256-019-0069-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-019-0069-5
This article is cited by
-
Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression
Communications Biology (2024)
-
Towards data-driven discovery of governing equations in geosciences
Communications Earth & Environment (2024)
-
Bayesian stroke modeling details sex biases in the white matter substrates of aphasia
Communications Biology (2023)
-
The end game: respecting major sources of population diversity
Nature Methods (2023)
-
Rare CNVs and phenome-wide profiling highlight brain structural divergence and phenotypical convergence
Nature Human Behaviour (2023)