Abstract
Spintronic devices exploit the spin, as well as the charge, of electrons and could bring new capabilities to the microelectronics industry. However, in order for spintronic devices to meet the ever-increasing demands of the industry, innovation in terms of materials, processes and circuits are required. Here, we review recent developments in spintronics that could soon have an impact on the microelectronics and information technology industry. We highlight and explore four key areas: magnetic memories, magnetic sensors, radio-frequency and microwave devices, and logic and non-Boolean devices. We also discuss the challenges—at both the device and the system level—that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Beyond CMOS – IEEE International Roadmap for Devices and Systems (IEEE 2018); https://irds.ieee.org/home/what-is-beyond-cmos.
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mat. 320, 1190–1216 (2008).
Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
Mark D. S, Miltat, J. Spin-transfer torque and dynamics. In Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) 225–308 (Springer, 2006).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Demidov, V. E. et al. Magnetization oscillations and waves driven by pure spin currents. Phys. Rep. 673, 1–31 (2017).
Jaroslav, F., Matos-Abiaguea, A., Ertlera, C., Stano, P. & Zuti, I. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007).
Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).
Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).
Dieny, B. & Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89, 025008 (2017).
Kawahara, T., Ito, K., Takemura, R. & Ohno, H. Spin-transfer torque RAM technology: review and prospect. Microelectron. Reliab. 52, 613–627 (2012).
Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotecnolh. 10, 187–191 (2015).
Apalkov, D., Dieny, B. & Slaughter, J. M. Magnetoresistive random access memory. Proc. IEEE 104, 1796–1830 (2016).
Khvalkovskiy, A. V. et al. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D. 46, 074001 (2013).
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).
Bauer, G. E., Saitoh, E. & Van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).
Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells Journal of physics. Cond. Mat. 15, R935 (2003).
Němec, P. et al. Experimental observation of the optical spin transfer torque. Nat. Phys. 8, 411–415 (2012).
Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).
Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).
Borders, W. A., Fukami, S. & Ohno, H. Characterization of spin-orbit torque-controlled synapse device for artificial neural network applications. Jpn. J. Appl. Phys. 57, 1002B2 (2018).
Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Stochastic p-bits for invertible logic. Phys. Rev. X 7, 031014 (2017).
Walowski, J. & Münzenberg, M. Perspective: ultrafast magnetism and THz spintronics. J. Appl. Phys. 120, 140901 (2016).
Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 10, 483 (2016).
Mankins, J. Technology Readiness Levels—A White Paper (NASA 1995); https://go.nature.com/2KcePNt
Lee, Y. K. et al. Embedded STT-MRAM in 28-nm FDSOI logic process for industrial MCU/IoT application. In IEEE Symposium on VLSI Technology 181–182 (IEEE, 2018).
Shih, Y. C. et al. A 1-Mb 28-nm 1T1MTJ STT-MRAM with single-cap offset-cancelled sense amplifier and in situ self-write-termination. IEEE J. Solid-State Circuits 54, 231–239 (2019).
Lee, K. et al. 22-nm FD-SOI embedded MRAM with full solder reflow compatibility and enhanced magnetic immunity. In IEEE Symposium on VLSI Technology 183–184 (IEEE, 2018).
Golonzka, O. et al. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. In 2018 IEEE Int. Electron Devices Meeting (IEDM) 18.1.1–18.1.4 (IEEE, 2018).
McGrath, D. Intel says FinFET-based embedded MRAM is production-ready. EE Times (20 February 2019); https://go.nature.com/3gQyWzf
Samsung Electronics starts commercial shipment of eMRAM product based on 28nm FD-SOI process. (Samsung, 2019); https://go.nature.com/2KlU8Pj
Mason, M. Making new memories: 22nm eMRAM is Ready to Displace eFlash. GlobalFoundries (29 Aug 2019); https://go.nature.com/3eBhrCB
Alzate, J. G. et al. 2 MB array-level demonstration of STT-MRAM process and performance towards L4 cache applications. In 2019 IEEE Int. Electron Devices Meeting (IEDM) 2.4.1–2.4.4 (IEEE, 2019).
Sato, H. et al. 14ns write speed 128Mb density Embedded STT-MRAM with endurance>1010 and 10yrs retention@85°C using novel low damage MTJ integration process. 2018 IEEE Int. Electron Devices Meeting (IEDM) 609 (IEEE, 2018).
Nguyen, V.D. et al. Novel approach for nano-patterning magnetic tunnel junctions stacks at narrow pitch: A route towards high density STT-MRAM applications. In 2017 IEEE International Electron Devices Meeting (IEDM) 38.5.1–38.5.4 (IEEE, 2017).
Hu, G. et al. STT-MRAM with double magnetic tunnel junctions. 2015 IEEE Int. Electron Devices Meeting (IEDM) 26.3.1-26.3.4 (IEEE, 2015).
Perrissin, N. et al. A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. Nanoscale 10, 12187–12195 (2018).
Garello, K. et al. Manufacturable 300mm platform solution for field-free switching SOT-MRAM. In 2019 Symposium on VLSI Technology T194–T195 (IEEE, 2019).
Garello, K. et al. SOT-MRAM 300MM Integration for low power and ultrafast embedded memories. in 2018 IEEE Symposium on VLSI Circuits 81–82 (2018).
Fukami, S. et al. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535 (2016).
Oh, Y. W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnetic/ferromagnetic/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).
Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582 (2018).
Sato, N. et al. Two-terminal spin–orbit torque magnetoresistive random access memory. Nat. Electron. 1, 508 (2018).
Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39 (2011).
Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 10, 853 (2011).
Yoda, H. et al. Voltage-control spintronics memory (VoCSM) having potentials of ultra-low energy-consumption and high-density. In 2016 IEEE Int. Electron Devices Meeting (IEDM) 27.6.1–27.6.4 (IEEE, 2016).
Parkin, S. S. P. & Yang, S. H. Memory on the racetrack. Nat. Nanotechnol. 10, 195 (2015).
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152 (2013).
Zheng, C. et al. Magnetoresistive sensor development roadmap (non-recording applications). IEEE Trans. Mag. 55, 1–30 (2019).
Freitas, P. P., Ferreira, R. & Cardoso, S. Spintronic sensors. Proc. IEEE 104, 1894 (2016).
Fermon, C. & Van de Voorde, M. (eds) Nanomagnetism: Applications and Perspectives I–XVIII (Wiley, Ltd, 2017); https://doi.org/10.1002/9783527698509
Silva, A. et al. Linearization strategies for high sensitivity magnetoresistive sensors. Eur. J. Phys. D. 72, 10601 (2015).
Paz, E. et al. Room temperature direct detection of low frequency magnetic fields in the 100 pT/√Hz range using large arrays of magnetic tunnel junctions. J. Appl. Phys. 115, 17E501 (2014).
Chaves, R. C. et al. Low frequency picotesla field detection using hybrid MgO based tunnel sensors. Appl. Phys. Lett. 91, 102504 (2007).
Lee, Y. C. et al. Magnetic tunnel junction based out-of-plane field sensor with perpendicular magnetic anisotropy in reference layer. J. Appl. Phys. 117, 17A320 (2015).
Suess, D. et al. Topologically protected vortex structures for low-noise magnetic sensors with high linear range. Nat. Electron. 1, 362 (2018).
Stearrett, R. et al. Evolution of barrier-resistance noise in CoFeB/MgO/CoFeB tunnel junctions during annealing. J. Appl. Phys. 107, 064502 (2010).
Wisniowski, P. et al. Reduction of low frequency magnetic noise by voltage induced magnetic anisotropy modulation in tunneling magnetoresistance sensors. Appl. Phys. Lett. 105, 082404 (2014).
Akpakwu, G. A., Silva, B. J., Hancke, G. P. & Abu-Mahfouz, A. M. A Survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access 6, 3619 (2017).
Chen, T. et al. Spin-Torque and Spin-Hall Nano-Oscillators. Proc. IEEE 104, 1919 (2016).
Kreissig, M. et al. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits. AIP Adv. 7, 056653 (2017).
Liu, L., Pai, C. F., Ralph, D. C. & Buhrman, R. A. Magnetic Oscillations Driven by the Spin Hall Effect in 3-Terminal Magnetic Tunnel Junction Devices. Phys. Rev. Lett. 109, 186602 (2012).
Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028 (2012).
Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).
Ruiz-Calafora, A. et al. Frequency shift keying by current modulation in a MTJ-based STNO with high data rate. Appl. Phys. Lett. 111, 082401 (2017).
Litvinenko, A. et al. Analog and digital phase modulation of spin torque nano-oscillators. Preprint at https://arxiv.org/abs/1905.02443 (2019).
Louis, S. et al. Ultra-fast wide band spectrum analyzer based on a rapidly tuned spin-torque nano-oscillator. Appl. Phys. Lett. 113, 112401 (2018).
Litvinenko, A. et al. Ultrafast sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator. Nano Lett. https://doi.org/10.1021/acs.nanolett.0c02195 (2020).
Choi, H. S. et al. Spin nano–oscillator–based wireless communication. Sci. Rep. 4, 5486 (2014).
Tsunegi, S. et al. Scaling up electrically synchronized spin torque oscillator networks. Sci. Rep. 8, 13475 (2018).
Lebrun, R. et al. Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme. Nat. Commun. 8, 15825 (2017).
Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).
Fang, B. et al. Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. Phys. Rev. Appl. 11, 014022 (2019).
Microwave Spintronics for Wireless Sensor Networks – SPINNET (ANR, 2018); https://anr.fr/Project-ANR-18-CE24-0012.
Marković, D. et al. Detection of the microwave emission from a spin-torque oscillator by a spin diode. Phys. Rev. Appl. 13, 044050 (2020).
Sulymenko, O. R., Prokopenko, O. V., Tyberkevych, V. S. & Slavin, A. N. Terahertz-frequency signal source based on an antiferromagnetic tunnel junction. IEEE Mag. Lett. 9, 3104605 (2018).
Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).
Zavislyak, I. V. & Popov M. A. Microwave properties and applications of yttrium iron garnet (YIG) films: current state of art and perspectives. In Yttrium: Compounds, Production and Applications (ed. Volkerts, B. D.) 87–125 (Nova, 2009).
Harris, V. G. Modern microwave ferrites. IEEE Trans. Mag. 48, 1075 (2012).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338 (2018).
Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Datta, S. & Das, B. Electronic analog of the electro‐optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).
Dery, H., Dalal, P., Cywiński, Ł. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).
Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000).
Imre, A. et al. Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata. Science 311, 205–208 (2006).
Zografos, O. et al. Exchange-driven magnetic logic. Sci. Rep. 7, 12154 (2017).
Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35 (2019).
Radu, I. P. et al. Spintronic majority gates. Proc. 2015 IEEE Int. Electron Devices Meeting (IEDM) 32.5.1–32.5.4 (2015).
Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).
Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a spin torque majority gate logic. IEEE Electron Device Lett. 32, 1128–1130 (2011).
Koumpouras, K. et al. A majority gate with chiral magnetic solitons. J. Phys. Condens. Matter 30, 375801 (2018).
Khitun, A. & Wang, K. L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 034306 (2011).
Wang, Q. et al. Realization of a nanoscale magnonic directional coupler for all-magnon circuits. Preprint at https://arXiv.org/abs/1905.12353 (2019).
Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (0214).
Fischer, T. et al. Experimental prototype of a spin-wave majority gate. Appl. Phys. Lett. 110, 152401 (2017).
Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
Kanazawa, N. et al. The role of Snell’s law for a magnonic majority gate. Sci. Rep. 7, 7898 (2017).
Wang, Q. et al. Integrated magnonic half-adder. Preprint at https://arxiv.org/abs/1902.02855 (2019).
Sugahara, S. & Nitta, J. Spin transistor electronics: an overview and outlook. Proc. IEEE 98, 2124 (2010).
Taniyama, T., Wada, E., Itoh, M. & Yamaguchi, M. Electrical and optical spin injection in ferromagnet/semiconductor heterostructures. NPG Asia Mater. 3, 65–73 (2011).
Chuang, P. et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol. 10, 35 (2015).
Brächer, T. & Pirro, P. An analog magnon adder for all-magnonic neurons. J. Appl. Phys. 124, 152119 (2018).
Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100 (2019).
Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).
Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).
Hirohata, A. et al. Roadmap for Emerging Materials for Spintronic Device Applications. IEEE Trans. Magn. 51, 0800511 (2015).
Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D. 50, 363001 (2017).
Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944 (2000).
Geprags, S. et al. Strain-controlled non-volatile magnetization switching. Solid State Commun. 198, 7–12 (2013).
Lambert, C. H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337 (2014).
Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo spin valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).
Piquemal-Banci, M. et al. Insulator-to-metallic spin-filtering in 2D magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano 12, 4712 (2018).
Hirohata, A., Frost, W., Samiepour, M. & Kim, J. Y. Perpendicular magnetic anisotropy in Heusler alloy films and their magnetoresistive junctions. Materials 11, 105 (2018).
Sagar, J. et al. Over 50% reduction in the formation energy of Co-based Heusler alloy films by two-dimensional crystallization. Appl. Phys. Lett. 105, 032401 (2014).
Yang, H. et al. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures. Nano Lett. 16, 145 (2015).
Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 1, 699 (2014).
MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300 (2017).
Yang, H. et al. Significant Dzyaloshinskii-Moriya interaction at graphene-ferromagnet interfaces due to the Rashba effect. Nat. Mater. 17, 605–609 (2018).
Miao, G. X., Müller, M. & Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 102, 076601 (2008).
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).
Yan, W. et al. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016).
Cummings, A. W. et al. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).
Benítez, L. A. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 14, 303 (2018).
Leutenantsmeyer, J. C. et al. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2017).
Zhang, Y. et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 6, 473 (2019).
Riddiford, L. J. et al. Efficient spin current generation in low-damping Mg(Al, Fe)2O4 thin films. Appl. Phys. Lett. 115, 122401 (2019).
Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).
Butler, W. H. et al. Switching distributions for perpendicular spin-torque devices within the macrospin approximation. IEEE Trans. Mag. 48, 4684 (2012).
Bertotti, G. Hysteresis in Magnetism (Academic Press, 1998).
Chubykalo-Fesenko, O. & Nieves, P. Handbook of Materials Modeling (Springer, 2018).
Guo, W. et al. SPICE modelling of magnetic tunnel junctions written by spin-transfer torque. J. Phys. D. 43, 215001 (2010).
Jabeur, K. et al. Comparison of Verilog-A compact modelling strategies for spintronic devices. Electron. Lett. 50, 1353 (2014).
Kazantseva, N. et al. Towards multiscale modeling of magnetic materials: Simulations of FePt. Phys. Rev. B 77, 184428 (2008).
Abert, C. et al. A self-consistent spin-diffusion model for micromagnetics. Sci. Rep. 6, 16 (2016).
Sturma, S. M., Bellegarde, C., Toussaint, J. C. & Gusakova, D. Simultaneous resolution of the micromagnetic and spin transport equations applied to current-induced domain wall dynamics. Phys. Rev. B 94, 104405 (2016).
Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnet-normal metal systems. Phys. Rev. Lett. 84, 2481 (2000).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Modeling and design of spintronic integrated circuits. IEEE Trans. Circ. Syst. 59, 2801 (2012).
Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).
Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174 (2015).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231 (2016).
8Gb C-die DDR4 SDRAM x16, K4A8G165WC datasheet (Samsung, 2017); https://go.nature.com/2Y8lRez
Jones, S. 7nm, 5nm and 3nm Logic, Current and Projected Processes (Semiwiki, 2018); https://go.nature.com/2XWfpaf
Author information
Authors and Affiliations
Contributions
B.D. and P.B. have coordinated the writing of this review. I.L.P., K.G. and P.G. wrote the section “Magnetic memories”. P.F., R.L. and W.R. wrote the section “Magnetic sensors”; U.E., S.O.D., J.A., P.B. and A.D. wrote the section “Radio-frequency and microwave devices”. P.P., C.A., A.A. and A.V.C. wrote the section “Logic and non-Boolean devices”. A.H., S.M., S.V. and M.C.O. wrote the section “Advanced materials, fabrication and tests”. M.d’A., G.P., G.F., L.L.D., R.C. and O.C.F. wrote the section “Modelling and design”.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dieny, B., Prejbeanu, I.L., Garello, K. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat Electron 3, 446–459 (2020). https://doi.org/10.1038/s41928-020-0461-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-020-0461-5
This article is cited by
-
Enhanced performance and functionality in spintronic sensors
npj Spintronics (2024)
-
Room temperature nonlocal detection of charge-spin interconversion in a topological insulator
npj 2D Materials and Applications (2024)
-
Fast and generalizable micromagnetic simulation with deep neural nets
Nature Machine Intelligence (2024)
-
Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures
Nature Communications (2024)
-
Non-volatile Fermi level tuning for the control of spin-charge conversion at room temperature
Nature Communications (2024)