Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

MACHINE LEARNING

AI for medical imaging goes deep

An artificial intelligence (AI) using a deep-learning approach can classify retinal images from optical coherence tomography for early diagnosis of retinal diseases and has the potential to be used in other image-based medical diagnoses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transfer learning can be applied to classify retinal optical coherence tomography images for early diagnosis of retinal diseases.

References

  1. LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  2. Ting, D. S. W. et al. J. Am. Med. Assoc. 318, 2211–2223 (2017).

    Article  Google Scholar 

  3. Kermany, D. S. et al. Cell 172, 1122–1131 (2018).

    Article  CAS  Google Scholar 

  4. Burlina, P. M. et al. JAMA Ophthalmol 135, 1170–1176 (2017).

    Article  Google Scholar 

  5. Lakhani, P. & Sundaram, B. Radiology 284, 574–582 (2017).

    Article  Google Scholar 

  6. Ting, D. S. W., Yi, P. H. & Hui, F. Radiology 286, 729–731 (2018).

    Article  Google Scholar 

  7. Esteva, A. et al. Nature 542, 115–118 (2017).

    Article  CAS  Google Scholar 

  8. Poplin, R. et al. Nat. Biomed. Eng 2, 158–164 (2018).

    Article  Google Scholar 

  9. Chew, E. Y. & Schachat, A. P. Ophthalmology 122, 2155–2156 (2015).

    Article  Google Scholar 

  10. Ting, D. S. W. & Wong, T. Y. Lancet 389, 2165–2166 (2017).

    Article  Google Scholar 

  11. Shen, D., Wu, G. & Suk, H. I. Annu. Rev. Biomed. Eng. 19, 221–248 (2017).

  12. Yi, P. H., Hui, F. & Ting, D. S. J. Am. Coll. Radiol. https://doi.org/10.1016/j.jacr.2017.12.037 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. W. Ting.

Ethics declarations

Competing interests

D.S.W.T. and T.Y.W. are co-inventors of a patent on a deep learning system in detection of retinal diseases. N.M.B. and P.B. are co-inventors of a patent on a deep learning system in detection of age-related macular degeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, D.S.W., Liu, Y., Burlina, P. et al. AI for medical imaging goes deep. Nat Med 24, 539–540 (2018). https://doi.org/10.1038/s41591-018-0029-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0029-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing