Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fine-mapping causal tissues and genes at disease-associated loci

Abstract

Complex diseases often have distinct mechanisms spanning multiple tissues. We propose tissue–gene fine-mapping (TGFM), which infers the posterior inclusion probability (PIP) for each gene–tissue pair to mediate a disease locus by analyzing summary statistics and expression quantitative trait loci (eQTL) data; TGFM also assigns PIPs to non-mediated variants. TGFM accounts for co-regulation across genes and tissues and models uncertainty in cis-predicted expression models, enabling correct calibration. We applied TGFM to 45 UK Biobank diseases or traits using eQTL data from 38 Genotype–Tissue Expression (GTEx) tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease or trait, of which 11% were gene–tissue pairs. Causal gene–tissue pairs identified by TGFM reflected both known biology (for example, TPO–thyroid for hypothyroidism) and biologically plausible findings (for example, SLC20A2–artery aorta for diastolic blood pressure). Application of TGFM to single-cell eQTL data from nine cell types in peripheral blood mononuclear cells (PBMCs), analyzed jointly with GTEx tissues, identified 30 additional causal gene–PBMC cell type pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Calibration and power of tissue–gene fine-mapping methods in simulations.
Fig. 2: Calibration and power of fine-mapping different classes of genetic elements with TGFM in simulations.
Fig. 3: Summary results of fine-mapping genetic elements with TGFM for 16 independent UKBB diseases and traits.
Fig. 4: Properties of fine-mapped tissues and genes.
Fig. 5: Robustness of TGFM results in analyses of alternative eQTL datasets.
Fig. 6: Examples of fine-mapped gene–tissue–disease triplets identified by TGFM.
Fig. 7: Summary results of fine-mapping gene–PBMC cell type pairs with TGFM for 18 representative UKBB diseases and traits.
Fig. 8: Examples of fine-mapped gene–PBMC cell type-disease triplets identified by TGFM.

Similar content being viewed by others

Data availability

TGFM PIPs for gene–tissue pairs, gene–PBMC cell type pairs, genes and non-mediated variants across 45 diseases or traits (for both analyses of 38 GTEx tissues and the analyses of 38 GTEx tissues and nine PBMC cell types) are publicly available at https://doi.org/10.7910/DVN/S26PFI; GTEx cis-predicted expression models for all gene–tissue pairs are publicly available at https://doi.org/10.7910/DVN/8IPOPK; pseudobulk PBMC cis-predicted expression for all gene–PBMC pairs are publicly available at https://doi.org/10.7910/DVN/8UL8XB; PBMC cis-predicted expression models for all gene–PBMC cell type pairs are publicly available at https://doi.org/10.7910/DVN/A6K9QW; and GWAS summary statistics for all 45 diseases or traits are publicly available at https://doi.org/10.7910/DVN/GTEGPE. To limit the use of computational resources, we refer the reader to UKBB in-sample linkage disequilibrium (337,000 unrelated British ancestry samples) from a previous work36, which is publicly available at https://registry.opendata.aws/ukbb-ld. The UKBB resource is publicly available by application (http://www.ukbiobank.ac.uk). Gene expression and genotype data were acquired from the GTEx v.8 eQTL dataset (dbGaP accession no. phs000424.v8.p2) and a previously published dataset33 (GEO accession number GSE174188 and dbGap accession number phs002812.v1.p1). Source data are provided with this paper.

Code availability

TGFM software (v.1.0) is available at https://github.com/BennyStrobes/TGFM (https://doi.org/10.5281/zenodo.13823621)79.

References

  1. Hekselman, I. & Yeger-Lotem, E. Mechanisms of tissue and cell-type specificity in heritable traits and diseases. Nat. Rev. Genet. 21, 137–150 (2020).

    CAS  PubMed  Google Scholar 

  2. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    CAS  PubMed  Google Scholar 

  3. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. Nat. Genet. 49, 1676–1683 (2017).

    CAS  PubMed  Google Scholar 

  6. Calderon, D. et al. Inferring relevant cell types for complex traits by using single-cell gene expression. Am. J. Hum. Genet. 101, 686–699 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shang, L., Smith, J. A. & Zhou, X. Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies. PLoS Genet. 16, e1008734 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Amariuta, T., Siewert-Rocks, K. & Price, A. L. Modeling tissue co-regulation estimates tissue-specific contributions to disease. Nat. Genet. 55, 1503–1511 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Downes, D. J. et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat. Genet. 53, 1606–1615 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kosoy, R. et al. Genetics of the human microglia regulome refines Alzheimer’s disease risk loci. Nat. Genet. 54, 1145–1154 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Arvanitis, M., Tayeb, K., Strober, B. J. & Battle, A. Redefining tissue specificity of genetic regulation of gene expression in the presence of allelic heterogeneity. Am. J. Hum. Genet. 109, 223–239 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet. 51, 675–682 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    PubMed Central  Google Scholar 

  25. Siewert-Rocks, K. M., Kim, S. S., Yao, D. W., Shi, H. & Price, A. L. Leveraging gene co-regulation to identify gene sets enriched for disease heritability. Am. J. Hum. Genet. 109, 393–404 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, S. et al. Adjusting for genetic confounders in transcriptome-wide association studies improves discovery of risk genes of complex traits. Nat. Genet. 56, 336–347 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).

    PubMed  PubMed Central  Google Scholar 

  31. Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the ‘sum of single effects’ model. PLoS Genet. 18, e1010299 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pasaniuc, B. & Price, A. L. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet. 18, 117–127 (2017).

    CAS  PubMed  Google Scholar 

  36. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mancuso, N. et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat. Commun. 9, 4079–11 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Nguyen, P. et al. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. (Berl.) 92, 272–283 (2008).

    CAS  PubMed  Google Scholar 

  39. Di Sabatino, A. et al. Depletion of immunoglobulin M memory B cells is associated with splenic hypofunction in inflammatory bowel disease. Am. J. Gastroenterol. 100, 1788–1795 (2005).

    PubMed  Google Scholar 

  40. Giuffrida, P. et al. Defective spleen function in autoimmune gastrointestinal disorders. Intern. Emerg. Med. 15, 225–229 (2020).

    PubMed  Google Scholar 

  41. Khan, U. & Ghazanfar, H. T lymphocytes and autoimmunity. Int. Rev. Cell Mol. Biol. 341, 125–168 (2018).

    CAS  PubMed  Google Scholar 

  42. Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 8, 235 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ho, A. W. & Kupper, T. S. T cells and the skin: from protective immunity to inflammatory skin disorders. Nat. Rev. Immunol. 19, 490–502 (2019).

    CAS  PubMed  Google Scholar 

  44. Roediger, B. & Schlapbach, C. T cells in the skin: lymphoma and inflammatory skin disease. J. Allergy Clin. Immunol. 149, 1172–1184 (2022).

    CAS  PubMed  Google Scholar 

  45. Biedermann, T., Skabytska, Y., Kaesler, S. & Volz, T. Regulation of T cell immunity in atopic dermatitis by microbes: the yin and yang of cutaneous inflammation. Front. Immunol. 6, 353 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bikker, H. et al. A 20-basepair duplication in the human thyroid peroxidase gene results in a total iodide organification defect and congenital hypothyroidism. J. Clin. Endocrinol. Metab. 79, 248–252 (1994).

    CAS  PubMed  Google Scholar 

  49. Bakker, B. et al. Two decades of screening for congenital hypothyroidism in the Netherlands: TPO gene mutations in total iodide organification defects (an update). J. Clin. Endocrinol. Metab. 85, 3708–3712 (2000).

    CAS  PubMed  Google Scholar 

  50. Furue, K. et al. The IL‐13–OVOL1–FLG axis in atopic dermatitis. Immunology 158, 281–286 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun, P. et al. OVOL1 regulates psoriasis-like skin inflammation and epidermal hyperplasia. J. Invest. Dermatol. 141, 1542–1552 (2021).

    CAS  PubMed  Google Scholar 

  52. Dragan, M. et al. Ovol1/2 loss‐induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep. 24, e56214 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. The EArly Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

    Google Scholar 

  54. Nachat, R. et al. Peptidylarginine deiminase isoforms are differentially expressed in the anagen hair follicles and other human skin appendages. J. Invest. Dermatol. 125, 34–41 (2005).

    CAS  PubMed  Google Scholar 

  55. Zhang, X. et al. Peptidylarginine deiminase 1-catalyzed histone citrullination is essential for early embryo development. Sci Rep. 6, 38727 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Revez, J. A. et al. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat. Commun. 11, 1647 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Manousaki, D. et al. Genome-wide association study for vitamin D levels reveals 69 independent loci. Am. J. Hum. Genet. 106, 327–337 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hyppönen, E., Vimaleswaran, K. S. & Zhou, A. Genetic determinants of 25-hydroxyvitamin D concentrations and their relevance to public health. Nutrients 14, 4408 (2022).

    PubMed  PubMed Central  Google Scholar 

  59. de Oliveira, D. F., de Lemos, R. R. & de Oliveira, J. R. M. Mutations at the SLC20A2 gene and brain resilience in families with idiopathic basal ganglia calcification (“Fahr’s disease”). Front. Hum. Neurosci. 7, 420 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Inden, M., Kurita, H. & Hozumi, I. Characteristics and therapeutic potential of sodium-dependent phosphate cotransporters in relation to idiopathic basal ganglia calcification. J. Pharmacol. Sci. 148, 152–155 (2022).

    CAS  PubMed  Google Scholar 

  61. Wallingford, M. C. et al. SLC20A2 deficiency in mice leads to elevated phosphate levels in cerbrospinal fluid and glymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification. Brain Pathol. 27, 64–76 (2017).

    CAS  PubMed  Google Scholar 

  62. Sargurupremraj, M. et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat. Commun. 11, 6285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao, B. et al. Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits. Nat. Commun. 12, 2878 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs? Trends Genet. 37, 109–124 (2021).

    CAS  PubMed  Google Scholar 

  65. Kane, L. & Ismail, N. Puberty as a vulnerable period to the effects of immune challenges: focus on sex differences. Behav. Brain Res. 320, 374–382 (2017).

    CAS  PubMed  Google Scholar 

  66. Resztak, J. A. et al. Analysis of transcriptional changes in the immune system associated with pubertal development in a longitudinal cohort of children with asthma. Nat. Commun. 14, 230 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Alberts, B. et al. Lymphocytes and the Cellular Basis of Adaptive Immunity (Garland Science, 2002).

  68. Lloyd, C. M. & Hessel, E. M. Functions of T cells in asthma: more than just TH2 cells. Nat. Rev. Immunol. 10, 838–848 (2010).

    CAS  PubMed  Google Scholar 

  69. Walker, L. S. K. & Sansom, D. M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11, 852–863 (2011).

    CAS  PubMed  Google Scholar 

  70. Oyewole-Said, D. et al. Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front. Immunol. 11, 608024 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hosseini, A., Gharibi, T., Marofi, F., Babaloo, Z. & Baradaran, B. CTLA-4: from mechanism to autoimmune therapy. Int. Immunopharmacol. 80, 106221 (2020).

    CAS  PubMed  Google Scholar 

  72. Hossen, M. M. et al. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front. Immunol. 14, 1198365 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chun, S. et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet. 49, 600–605 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    CAS  PubMed  Google Scholar 

  75. Cui, R. et al. Improving fine-mapping by modeling infinitesimal effects. Nat. Genet. 56, 162–169 (2024).

    CAS  PubMed  Google Scholar 

  76. Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Liu, L. et al. Conditional transcriptome-wide association study for fine-mapping candidate causal genes. Nat. Genet. 56, 348–356 (2024).

    CAS  PubMed  Google Scholar 

  79. Strober, B. J. TGFM software. Zenodo https://doi.org/10.5281/zenodo.13823621 (2024).

  80. Marriott, P., Efron, B. & Tibshirani, R. J. An introduction to the bootstrap. J. R. Stat. Soc. Ser. A Stat. Soc. 158, 347 (1995).

    Google Scholar 

  81. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    Google Scholar 

  82. O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by negative selection. Am. J. Hum. Genet. 105, 456–476 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Gazal, S. et al. Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gazal, S. et al. Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-coding annotations. Nat. Genet. 50, 1600–1607 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Nat. Genet. 56, 1841–1850 (2024).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Durvasula and X. Jiang for helpful discussions. This research was conducted using the UKBB resource under application no. 16549 and funded by National Institutes of Health (NIH) grants R01 MH101244 (A.L.P.), R37 MH107649 (A.L.P.), R01 HG006399 (A.L.P.), R01 MH115676 (A.L.P.), U01 HG012009 (A.L.P.), R56 HG013083 (A.L.P.) and F32 HG012889 (B.J.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.L.P. and B.J.S. proposed the idea for the project. B.J.S. developed the TGFM model and performed the analysis. B.J.S. and A.L.P. wrote the manuscript. A.L.P., M.J.Z., T.A. and J.R. provided suggestions that aided the development of the TGFM model and suggested relevant downstream analyses to perform.

Corresponding authors

Correspondence to Benjamin J. Strober or Alkes L. Price.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of tissue-gene fine-mapping power at same level of FDR in simulations.

Average gene-tissue fine-mapping power (x-axis) at a specific level of FDR (y-axis) across 100 simulations for various fine-mapping methods (see legend) at eQTL sample size 100-300 (a), 300 (b), 500 (c), and 1000 (d). We note that all methods other than TGFM (cTWAS-TG, cTWAS, FOCUS-TG, FOCUS, coloc, JLIM, SMR, and SMR + HEIDI) are severely mis-calibrated, with high FDR at even the most stringent p-value or posterior probability thresholds, as evident by no method other than TGFM achieving an FDR < = 0.34 at any threshold. JLIM, SMR, and SMR + HEIDI compute p-values for each gene-tissue pair, whereas TGFM, cTWAS-TG, cTWAS, FOCUS-TG, FOCUS, and coloc calculate posterior probabilities for each gene-tissue pair. SMR corresponds to using the SMR p-value to assess the significance of a gene-tissue pair, whereas SMR + HEIDI corresponds to using the SMR p-value to assess the significance of a gene-tissue pair after filtering to gene-tissue pairs with HEIDI p-value <= 0.05. We do not visualize FDR and power of any p-value or posterior probability threshold containing fewer than 2 gene-tissue pairs in order to remove highly uncertain FDR and power estimates from the visualization.

Source data

Extended Data Fig. 2 Calibration and power of tissue-gene fine-mapping for various versions of TGFM in simulations.

(a,b) Average tissue-gene fine-mapping FDR across 100 simulations for various fine-mapping methods (see legend) across eQTL sample sizes (x-axis) at PIP = 0.5 (a) and PIP = 0.9 (b). Single thick, dashed horizontal line denotes 1 – PIP threshold (see main text). The thin dashed horizontal lines specific to each bar denotes (1 – average PIP) (where average is taken across all genetic elements belonging to that bar; see main text). (c,d) Average tissue-gene fine-mapping power across 100 simulations for various fine-mapping methods (see legend) across eQTL sample sizes (x-axis) at PIP = 0.5 (c) and PIP = 0.9 (d). Error bars denote 95% confidence intervals. This supplementary figure is similar to Fig. 1, except it shows calibration and power of additional tissue-gene fine-mapping methods. ‘TGFM (no sampling, uniform prior)’ corresponds to TGFM (Gene-Tissue) with a uniform prior and a single cis-predicted expression model (based on posterior mean causal cis-eQTL effect sizes) instead of averaging results across 100 sampled cis-predicted expression models. ‘TGFM (uniform prior)’ corresponds to TGFM (Gene-Tissue) with a uniform prior. ‘TGFM’ corresponds to the default version of TGFM (Gene-Tissue) (shown in Fig. 1).

Source data

Extended Data Fig. 3 Enrichment of fine-mapped TGFM genes within non-disease-specific gene sets.

(a) Enrichment of genes with TGFM (Gene) PIP > 0.5 within non-disease-specific gene sets meta-analyzed over 16 independent traits. Error bars represent 95% confidence intervals. (b) Enrichment of genes with TGFM (Gene) PIP > 0.25, 0.5, and 0.75 (see legend) within non-disease-specific gene sets meta-analyzed over 16 independent traits. Error bars represent 95% confidence intervals. Odds ratios and standard errors on the odds ratio were computed using logistic regression. Numerical results reported in Supplementary Table 14.

Source data

Extended Data Fig. 4 Comparison of TGFM (Gene) and cTWAS calibration and power using silver standard gene set of 69 known LDL cholesterol genes.

Empirical FDR (y-axis) using silver-standard gene set of 69 known LDL cholesterol genes at PIP greater than or equal to a range of PIP thresholds (x-axis) for TGFM (Gene) (a) and cTWAS applied to GTEx liver (b). Light shading denotes 95% confidence intervals. Black dashed line denotes (1 – average PIP), a less conservative choice than (1 – PIP threshold). (c) Average gene fine-mapping power (x-axis) at a specific level of FDR (y-axis) based on silver-standard gene set of 69 known LDL cholesterol genes for TGFM (gene) and cTWAS applied to GTEx liver (see legend). PIPs for cTWAS applied to GTEx liver extracted from Supplementary Table 2 of ref. 26.

Source data

Extended Data Fig. 5 Properties of disease gene fine-mapping methods.

For each disease gene fine-mapping method, we report whether or not the method jointly models tissues and genes; models non-mediated variants; and models uncertainty in cis-predicted gene expression. *: FOCUS allows for modeling of non-mediated genetic effects via a single genotype intercept term shared across all variants, but this functionality is not enabled in the default version of FOCUS (and does not ameliorate mis-calibration; Supplementary Fig. 22).

Supplementary information

Supplementary Information

Supplementary Table captions, Supplementary Note, Supplementary Figs. 1–42

Reporting Summary

Peer Review File

Supplementary Tables

An Excel file with 1 sheet for each Supplementary table.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Fig. 6

Statistical source data for Fig. 6.

Source Data Fig. 7

Statistical source data for Fig. 7.

Source Data Fig. 8

Statistical source data for Fig. 8.

Source Data Extended Data Fig./Table 1

Statistical source data for Extended Data Fig. 1.

Source Data Extended Data Fig./Table 2

Statistical source data for Extended Data Fig. 2.

Source Data Extended Data Fig./Table 3

Statistical source data for Extended Data Fig. 3.

Source Data Extended Data Fig./Table 4

Statistical source data for Extended Data Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strober, B.J., Zhang, M.J., Amariuta, T. et al. Fine-mapping causal tissues and genes at disease-associated loci. Nat Genet 57, 42–52 (2025). https://doi.org/10.1038/s41588-024-01994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01994-2

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics