Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition

Abstract

Integrating single-cell trajectory analysis with pooled genetic screening could reveal the genetic architecture that guides cellular decisions in development and disease. We applied this paradigm to probe the genetic circuitry that controls epithelial-to-mesenchymal transition (EMT). We used single-cell RNA sequencing to profile epithelial cells undergoing a spontaneous spatially determined EMT in the presence or absence of transforming growth factor-β. Pseudospatial trajectory analysis identified continuous waves of gene regulation as opposed to discrete ‘partial’ stages of EMT. KRAS was connected to the exit from the epithelial state and the acquisition of a fully mesenchymal phenotype. A pooled single-cell CRISPR-Cas9 screen identified EMT-associated receptors and transcription factors, including regulators of KRAS, whose loss impeded progress along the EMT. Inhibiting the KRAS effector MEK and its upstream activators EGFR and MET demonstrates that interruption of key signaling events reveals regulatory ‘checkpoints’ in the EMT continuum that mimic discrete stages, and reconciles opposing views of the program that controls EMT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pseudospatial trajectory reconstruction of spontaneous EMT reveals the transition as a continuum of epithelial–mesenchymal states.
Fig. 2: Alignment of spontaneous and TGF-β-driven EMT pseudospatial trajectories identifies discrete waves along the EMT continuum.
Fig. 3: Multiplexed loss-of-function screening of EMT-associated genes recovers deficiencies in TGF-β-induced EMT.
Fig. 4: Accumulation of knockout cells across spontaneous and TGF-β-driven EMT trajectories identifies regulators of discrete checkpoints across the EMT continuum.

Similar content being viewed by others

Data availability

Data are available on GEO under accession number GSE114687. Data will also be provided via the Github repository described in ‘Code availability’.

Code availability

Code can be found on Github at https://github.com/cole-trapnell-lab/pseudospace.

References

  1. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850 (2013).

    Article  PubMed  Google Scholar 

  3. Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nat. Rev. Mol. Cell Biol. 9, 557–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Li, M. et al. Epithelial-mesenchymal transition: an emerging target in tissue fibrosis. Exp. Biol. Med. 241, 1–13 (2016).

    Article  CAS  Google Scholar 

  5. Nieto, M. A., Angela Nieto, M., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J. et al. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci. Signal. 7, ra91 (2014).

    Article  PubMed  Google Scholar 

  8. Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N. & Ben-Jacob, E. MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination. Proc. Natl Acad. Sci. USA 110, 18144–18149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong, T. et al. An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Comput. Biol. 11, e1004569 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Krishnaswamy, S., Zivanovic, N., Sharma, R., Pe’er, D. & Bodenmiller, B. Learning edge rewiring in EMT from single cell data. Preprint at bioRxiv https://doi.org/10.1101/155028 (2017).

  11. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aiello, N. M. et al. EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev. Cell 45, 681–695.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289–293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarrió, D. et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 68, 989–997 (2008).

    Article  PubMed  Google Scholar 

  20. Rodriguez, L. G., Wu, X. & Guan, J.-L. Wound-healing assay. Methods Mol. Biol. 294, 23–29 (2005).

    PubMed  Google Scholar 

  21. Vuoriluoto, K. et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436–1448 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Joost, S. et al. Single-cell transcriptomics reveals that differentiation and spatial signatures shape epidermal and hair follicle heterogeneity. Cell Syst. 3, 221–237.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schliekelman, M. J. et al. Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival. Cancer Res. 75, 1789–1800 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. George, J. T., Jolly, M. K., Xu, J., Somarelli, J. & Levine, H. Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res. 77, 6415–6428 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. The Gene Ontology Consortium & The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2019)..

  27. Liberzon, A. et al. The molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tchernitsa, O. I. et al. Transcriptional basis of KRAS oncogene-mediated cellular transformation in ovarian epithelial cells. Oncogene 23, 4536–4555 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Toivola, D. M., Tao, G.-Z., Habtezion, A., Liao, J. & Omary, M. B. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15, 608–617 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, R. Y.-J., Guilford, P. & Thiery, J. P. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J. Cell Sci. 125, 4417–4422 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Feng, Y.-X. et al. Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 4, 702–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. CaulIn, C., Scholl, F. G., Frontelo, P., Gamallo, C. & Quintanilla, M. Chronic exposure of cultured transformed mouse epidermal cells to transforming growth factor-/1 induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype. Cell Growth Differ. 6, 1027–1036 (1995).

    CAS  PubMed  Google Scholar 

  35. Cacchiarelli, D. et al. Aligning single-cell developmental and reprogramming trajectories identifies molecular determinants of myogenic reprogramming outcome. Cell Syst. 7, 258–268.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of single-cell trajectories to compare cellular expression dynamics. Nat. Methods 15, 267–270 (2018).

  37. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vintsyuk, T. K. Speech discrimination by dynamic programming. Cybern. Syst. Anal. 4, 52–57 (1968).

    Article  Google Scholar 

  39. Rabiner, L. & Juang, B. H. Fundamentals of Speech Recognition (PTR Prentice Hall, 1993).

  40. Masszi, A. et al. Integrity of cell-cell contacts is a critical regulator of TGF-β1-induced epithelial-to-myofibroblast transition. Am. J. Pathol. 165, 1955–1967 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaul, Y. D. et al. Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell 158, 1094–1109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuo, P.-L., Shen, K.-H., Hung, S.-H. & Hsu, Y.-L. CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation. Carcinogenesis 33, 2477–2487 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Al-Alwan, L. A. et al. Differential roles of CXCL2 and CXCL3 and their receptors in regulating normal and asthmatic airway smooth muscle cell migration. J. Immunol. 191, 2731–2741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tian, X.-J., Zhang, H. & Xing, J. Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys. J. 105, 1079–1089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883–1896.e15 (2016).

    CAS  PubMed  Google Scholar 

  51. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 5, 271–274 (2018).

    Article  Google Scholar 

  54. Clark, E. A. & Hynes, R. O. Ras activation is necessary for integrin-mediated activation of extracellular signal-regulated kinase 2 and cytosolic phospholipase A2but not for cytoskeletal organization. J. Biol. Chem. 271, 14814–14818 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Citri, A. & Yarden, Y. EGF–ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Peschard, P. & Park, M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 26, 1276–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Ahmad, I., Iwata, T. & Leung, H. Y. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta 1823, 850–860 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Reed, N. I. et al. The v 1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 7, 288ra79–288ra79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Karnoub, A. E. & Weinberg, R. A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Trapnell and Shendure laboratories for helpful discussions during the course of this study and feedback on our manuscript, particularly S. Srivatsan, L. Saunders, H. Pliner and J. Packer. We thank N.M. Cruz for feedback on our manuscript. J.L.M.F. thanks S.V. McFaline-Cruz for support. J.L.M.F. was supported by NIH grants T32HL007828 and T32HG000035. A.J.H. was supported by an NSF Graduate Research Fellowship. J.S. and C.T. are supported by NIH grant no. U54DK107979 and the Paul G. Allen Frontiers Group. C.T. is supported by NIH grant nos. DP2HD088158, RC2DK114777 and R01HL118342 and is partly supported by an Alfred P. Sloan Foundation Research Fellowship. J.S. is supported by NIH grant nos. DP1HG007811 and R01HG006283 and is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.L.M.F., J.S. and C.T. devised the project. J.L.M.F., A.J.H., J.S. and C.T. designed experiments. J.L.M.F., A.J.H. and D.J. performed experiments. D.J. and X.Q. provided substantial technical and computational support, respectively. J.L.M.F and A.J.H. performed analyses. J.L.M.F. and C.T. wrote the manuscript with the support of the other authors.

Corresponding author

Correspondence to Cole Trapnell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32 and Table 1

Reporting Summary

Supplementary Table 2

Differential expression analysis between cell fractions of MCF10A cells undergoing spontaneous EMT.

Supplementary Table 3

Pseudospatial differential expression analysis of spontaneous EMT.

Supplementary Table 4

Geneset analysis of genes differentially expressed across pseudospace in cells undergoing spontaneous EMT.

Supplementary Table 5

Differential expression analysis between cell fractions of HuMEC cells undergoing spontaneous EMT.

Supplementary Table 6

Differential expression analysis between aligned spontaneous and TGF-β-driven MCF10A EMT trajectories.

Supplementary Table 7

Geneset analysis of genes differentially expressed between aligned spontaneous and TGF-β-driven MCF10A EMT trajectories.

Supplementary Table 8

Pseudospatial differential expression analysis between knockout and non-targeting control MCF10A cells undergoing spontaneous EMT.

Supplementary Table 9

Pseudospatial differential expression analysis between knockout and non-targeting control MCF10A cells undergoing TGF-β-driven EMT.

Supplementary Table 10

Sequences of oligonucleotides used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McFaline-Figueroa, J.L., Hill, A.J., Qiu, X. et al. A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat Genet 51, 1389–1398 (2019). https://doi.org/10.1038/s41588-019-0489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-019-0489-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research