Abstract
Ensembles of particles governed by quantum mechanical laws exhibit intriguing emergent behaviour. Atomic quantum gases1,2, liquid helium3,4 and electrons in quantum materials5,6,7 all exhibit distinct properties because of their composition and interactions. Quantum degenerate samples of ultracold dipolar molecules promise the realization of new phases of matter and new avenues for quantum simulation8 and quantum computation9. However, rapid losses10, even when reduced through collisional shielding techniques11,12,13, have so far prevented evaporative cooling to a Bose–Einstein condensate (BEC). Here we report on the realization of a BEC of dipolar molecules. By strongly suppressing two- and three-body losses via enhanced collisional shielding, we evaporatively cool sodium–caesium molecules to quantum degeneracy and cross the phase transition to a BEC. The BEC reveals itself by a bimodal distribution when the phase-space density exceeds 1. BECs with a condensate fraction of 60(10)% and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 s. This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far, promising the creation of exotic dipolar droplets14, self-organized crystal phases15 and dipolar spin liquids in optical lattices16.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The experimental data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.
Code availability
All relevant codes are available from the corresponding author upon reasonable request.
References
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).
Kapitza, P. Viscosity of liquid helium below the λ-point. Nature 141, 74 (1938).
Allen, J. F. & Misener, A. Flow of liquid helium II. Nature 141, 75 (1938).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).
DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).
Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).
Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).
Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).
Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).
Schmidt, M., Lassablière, L., Quéméner, G. & Langen, T. Self-bound dipolar droplets and supersolids in molecular Bose-Einstein condensates. Phys. Rev. Res. 4, 013235 (2022).
Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).
Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018).
Inouye, S. et al. Observation of feshbach resonances in a bose–einstein condensate. Nature 392, 151–154 (1998).
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).
Zwerger, W. The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics, Vol. 836 (Springer Science & Business Media, 2011).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).
Lahaye, T. et al. Strong dipolar effects in a quantum ferrofluid. Nature 448, 672–675 (2007).
Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).
Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).
Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).
Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).
Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).
Wilks, J. The Properties of Liquid and Solid Helium (Clarendon, 1967).
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).
Laughlin, R. B. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).
Pollet, L., Picon, J., Büchler, H. & Troyer, M. Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104, 125302 (2010).
Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).
Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).
Żuchowski, P. S. & Hutson, J. M. Reactions of ultracold alkali-metal dimers. Phys. Rev. A 81, 060703 (2010).
Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).
Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).
Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).
Ye, X., Guo, M., González-Martínez, M. L., Quéméner, G. & Wang, D. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4, eaaq0083 (2018).
Gregory, P. D. et al. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 (2019).
Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).
De Marco, L. et al. A degenerate fermi gas of polar molecules. Science 363, 853–856 (2019).
Duda, M. et al. Transition from a polaronic condensate to a degenerate fermi gas of heteronuclear molecules. Nat. Phys. 19, 720–725 (2023).
Cooper, N. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).
Micheli, A. et al. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010).
Lassablière, L. & Quéméner, G. Controlling the scattering length of ultracold dipolar molecules. Phys. Rev. Lett. 121, 163402 (2018).
Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules. Phys. Rev. Lett. 121, 163401 (2018).
Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).
Julienne, P. S., Hanna, T. M. & Idziaszek, Z. Universal ultracold collision rates for polar molecules of two alkali-metal atoms. Phys. Chem. Chem. Phys. 13, 19114–19124 (2011).
Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579–1584 (2023).
Lin, J. et al. Microwave shielding of bosonic NaRb molecules. Phys. Rev. X 13, 031032 (2023).
Avdeenkov, A. & Bohn, J. L. Linking ultracold polar molecules. Phys. Rev. Lett. 90, 043006 (2003).
Chen, X.-Y. et al. Ultracold field-linked tetratomic molecules. Nature 626, 283–287 (2024).
Micheli, A., Pupillo, G., Büchler, H. & Zoller, P. Cold polar molecules in two-dimensional traps: tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007).
Gorshkov, A. V. et al. Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett. 101, 073201 (2008).
Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).
Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).
Mewes, M.-O. et al. Bose-Einstein condensation in a tightly confining dc magnetic trap. Phys. Rev. Lett. 77, 416–419 (1996).
Dagdigian, P. J. & Wharton, L. Molecular beam electric deflection and resonance spectroscopy of the heteronuclear alkali dimers: 39K7Li, Rb7Li, 39K23Na, Rb23Na, and 133Cs23Na. J. Chem. Phys. 57, 1487–1496 (1972).
Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).
Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).
Manmana, S. R., Stoudenmire, E., Hazzard, K. R., Rey, A. M. & Gorshkov, A. V. Topological phases in ultracold polar-molecule quantum magnets. Phys. Rev. B 87, 081106 (2013).
Büchler, H., Micheli, A. & Zoller, P. Three-body interactions with cold polar molecules. Nat. Phys. 3, 726–731 (2007).
Warner, C. et al. Overlapping Bose-Einstein condensates of 23Na and 133Cs. Phys. Rev. A 104, 033302 (2021).
Lam, A. Z. et al. High phase-space density gas of NaCs Feshbach molecules. Phys. Rev. Res. 4, L022019 (2022).
Stevenson, I. et al. Ultracold gas of dipolar NaCs ground state molecules. Phys. Rev. Lett. 130, 113022 (2023).
Warner, C. et al. Efficient pathway to nacs ground state molecules. New J. Phys. 25, 053036 (2023).
Yuan, W. et al. A planar cloverleaf antenna for circularly polarized microwave fields in atomic and molecular physics experiments. Rev. Sci. Instrum. 94, 123201 (2023).
Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).
Söding, J. et al. Three-body decay of a rubidium Bose–Einstein condensate. Appl. Phys. B 69, 257–261 (1999).
Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules with imperfectly circular polarization. Phys. Rev. A 100, 052704 (2019).
Colbert, D. T. & Miller, W. H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992).
Acknowledgements
We thank C. Greene, A. Elkamshishy and S. Singh for their discussions and preliminary calculations on the field-linked bound states in the shielding potentials, and R. Wooten, T. Yefsah and M. Zwierlein for critical reading and helpful comments on the paper. We are grateful to A. Lam and C. Warner for their contributions to the construction of the experimental apparatus. We also thank I. Bloch, T.-L. Ho and V. Vuletić for their discussions. We acknowledge E. Bellingham and H. Kwak for their experimental assistance. We thank Rohde & Schwarz for the loan of equipment. This work was supported by an NSF CAREER Award (award no. 1848466), an ONR DURIP Award (award no. N00014-21-1-2721), a grant from the Gordon and Betty Moore Foundation (award no. GBMF12340) and a Lenfest Junior Faculty Development Grant from Columbia University. W.Y. acknowledges support from the Croucher Foundation. I.S. was supported by the Ernest Kempton Adams Fund. S.W. acknowledges additional support from the Alfred P. Sloan Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to the work presented in this paper. N.B., W.Y., S.Z. and I.S. carried out the experiments and improved the experimental setup. T.K. performed the theoretical calculations. S.W. supervised the study. N.B., I.S. and S.W. wrote the paper. All authors contributed to the development of the experimental concepts, interpretation of the data and reviewed the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Lauriane Chomaz, Simon Cornish and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Microwave setup.
a, Block diagram of the microwave components producing the σ+ field. b, Block diagram of the microwave components producing the π field. MHz-level detunings are omitted from the shown frequencies of the source.
Extended Data Fig. 2 Comparison of fitting models.
Ratio of χ2-values for Gaussian and bimodal fits. The vertical dashed line marks the onset of the phase transition.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bigagli, N., Yuan, W., Zhang, S. et al. Observation of Bose–Einstein condensation of dipolar molecules. Nature 631, 289–293 (2024). https://doi.org/10.1038/s41586-024-07492-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-024-07492-z
This article is cited by
-
Quantum mixtures of ultracold gases of neutral atoms
Nature Reviews Physics (2024)
-
Quantum computation and quantum simulation with ultracold molecules
Nature Physics (2024)
-
Physicists coax molecules into exotic quantum state — ending decades-long quest
Nature (2024)
-
Ultracold molecules that interact from afar form elusive quantum state
Nature (2024)
-
Quantum state manipulation and cooling of ultracold molecules
Nature Physics (2024)