Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

CRISPR–Cas9 potential for identifying novel therapeutic targets in muscle-invasive bladder cancer

Abstract

Gene editing technologies help identify the genetic perturbations driving tumour initiation, growth, metastasis and resistance to therapeutics. This wealth of information highlights tumour complexity and is driving cancer research towards precision medicine approaches based on an individual’s tumour genetics. Bladder cancer is the 11th most common cancer in the UK, with high rates of relapse and low survival rates in patients with muscle-invasive bladder cancer (MIBC). MIBC is highly heterogeneous and encompasses multiple molecular subtypes, each with different responses to therapeutics. This evidence highlights the need to identify innovative therapeutic targets to address the challenges posed by this heterogeneity. CRISPR–Cas9 technologies have been used to advance our understanding of MIBC and determine novel drug targets through the identification of drug resistance mechanisms, targetable cell-cycle regulators, and novel tumour suppressor and oncogenes. However, the use of these technologies in the clinic remains a substantial challenge and will require careful consideration of dosage, safety and ethics. CRISPR–Cas9 offers considerable potential for revolutionizing bladder cancer therapies, but substantial research is required for validation before these technologies can be used in the clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CRISPR–Cas9 mechanism and alternative methodologies.
Fig. 2: CRISPR–Cas gene editing in muscle-invasive bladder cancer research.

Similar content being viewed by others

References

  1. Gaj, T., Gersbach, C. A. & Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Xiao-Jie, L., Hui-Ying, X., Zun-Ping, K., Jin-Lian, C. & Li-Juan, J. CRISPR-Cas9: A new and promising player in gene therapy. J. Med. Genet. 52, 289–296 (2015).

    Article  PubMed  Google Scholar 

  3. Awwad, S. W., Serrano-Benitez, A., Thomas, J. C., Gupta, V. & Jackson, S. P. Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nat. Rev. Mol. Cell Biol. 24, 477–494 (2023).

    Article  PubMed  CAS  Google Scholar 

  4. Wang, M., Chen, M., Wu, X., Huang, X. & Yu, B. CRISPR applications in cancer diagnosis and treatment. Cell. Mol. Biol. Lett. 28, 73 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Das, S., Bano, S., Kapse, P. & Kundu, G. C. CRISPR based therapeutics: a new paradigm in cancer precision medicine. Molecular Cancer 21, 85 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cancer Research UK. Bladder cancer incidence statistics. CRUK www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer/incidence (2022).

  7. Chang, S. S. et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO Guideline. J. Urol. 196, 1021–1029 (2016).

    Article  PubMed  Google Scholar 

  8. Nadal, R. & Bellmunt, J. Management of metastatic bladder cancer. Cancer Treat. Rev. 76, 10–21 (2019).

    Article  PubMed  CAS  Google Scholar 

  9. Perera, J. & Hoskin, P. The role of radiotherapy in metastatic bladder cancer. J. Cancer Metastasis Treat. 8, 4 (2022).

    Google Scholar 

  10. Song, Y. P. et al. Long-term outcomes of radical radiation therapy with hypoxia modification with biomarker discovery for stratification: 10-year update of the BCON (Bladder Carbogen Nicotinamide) phase 3 randomized trial (ISRCTN45938399). Int. J. Radiat. Oncol. Biol. Phys. 110, 1407–1415 (2021).

    Article  PubMed  Google Scholar 

  11. Stenehjem, D. D., Tran, D., Nkrumah, M. A. & Gupta, S. PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. Onco Targets Ther. 11, 5973–5989 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lopez-Beltran, A. et al. Immune checkpoint inhibitors for the treatment of bladder cancer. Cancers 13, 131 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Massari, F. et al. Immune checkpoint inhibitors for metastatic bladder cancer. Cancer Treat. Rev. 64, 11–20 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Fong, M. H. Y., Feng, M., McConkey, D. J. & Choi, W. Update on bladder cancer molecular subtypes. Transl Androl. Urol. 9, 2881 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. McConkey, D. J. & Choi, W. Molecular subtypes of bladder cancer. Curr. Oncol. Rep. 20, 1–7 (2018).

    Article  CAS  Google Scholar 

  16. Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    Article  PubMed  Google Scholar 

  17. Marraffini, L. A. in Streptococcus pyogenes: Basic Biology to Clinical Manifestations (eds Ferretti, J. J., Stevens, D. L. & Fischetti V. A.) (Univ. Oklahoma Health Scinces Center, 2016).

  18. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096, (2014).

    Article  PubMed  Google Scholar 

  19. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gunitseva, N., Evteeva, M., Borisova, A., Patrushev, M. & Subach, F. RNA-dependent RNA targeting by CRISPR-Cas systems: characterizations and applications. Int. J. Mol. Sci. 24, 6894 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hefferin, M. L. & Tomkinson, A. E. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair 4, 639648 (2005).

    Article  Google Scholar 

  23. Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jensen, T. I. et al. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Res. 31, 2120–2130 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Armando Casas-Mollano, J., Zinselmeier, M. H., Erickson, S. E. & Smanski, M. J. CRISPR-Cas activators for engineering gene expression in higher eukaryotes. CRISPR J. 3, 350–364 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 422–451 (2013).

    Article  Google Scholar 

  30. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gaudelli, N. M. et al. Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Eid, A., Alshareef, S. & Mahfouz, M. M. CRISPR base editors: Genome editing without double-stranded breaks. Biochem. J. 475, 1955–1964 (2018).

    Article  PubMed  CAS  Google Scholar 

  33. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article  PubMed  CAS  Google Scholar 

  35. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  PubMed  CAS  Google Scholar 

  37. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 1–12 (2014).

    Article  Google Scholar 

  38. Zetsche, B. et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163, 759–771 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhang, C. et al. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell 175, 212–223 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu, J. et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Sci. Adv. 5, eaaw6499 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen, S. H. & Zhaori, G. Potential clinical applications of siRNA technique: Benefits and limitations. Eur. J. Clin. Invest. 41, 221–232 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. Isazadeh, H. et al. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol. Biol. Rep. 50, 9529–9543 (2023).

    Article  PubMed  CAS  Google Scholar 

  44. Massari, F. et al. Emerging concepts on drug resistance in bladder cancer: Implications for future strategies. Crit. Rev. Oncol. Hematol. 96, 81–90 (2015).

    Article  PubMed  Google Scholar 

  45. Galluzzi, L. et al. Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869–1883 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Yu, H. M. & Wang, T. C. Mechanism of cisplatin resistance in human urothelial carcinoma cells. Food Chem. Toxicol. 50, 1226–1237 (2012).

    Article  PubMed  CAS  Google Scholar 

  47. Liu, S., Chen, X. & Lin, T. Emerging strategies for the improvement of chemotherapy in bladder cancer: Current knowledge and future perspectives. J. Adv. Res. 39, 187–202 (2022).

    Article  PubMed  Google Scholar 

  48. Kumar, G. et al. Genome-wide CRISPR screen reveals SLFN11 as a potent mediator of cisplatin sensitivity in muscle-invasive bladder cancer. Urol. Oncol. Semin. Ori. 38, 905 (2020).

    Article  Google Scholar 

  49. Luan, J., Gao, X., Hu, F., Zhang, Y. & Gou, X. SLFN11 is a general target for enhancing the sensitivity of cancer to chemotherapy (DNA-damaging agents). J. Drug Target. 28, 33–40 (2020).

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, B. et al. A wake-up call for cancer DNA damage: the role of Schlafen 11 (SLFN11) across multiple cancers. Br. J. Cancer 125, 1333–1340 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang, H. et al. CircLIFR synergizes with MSH2 to attenuate chemoresistance via MutSα/ATM-p73 axis in bladder cancer. Mol. Cancer 20, 1–20 (2021).

    Article  Google Scholar 

  52. Shi, Z.D. et al. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol. Cancer 21, 37 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lan, L. et al. Functional and physical interactions between ERCC1 and MSH2 complexes for resistance to cis-diamminedichloroplatinum(II) in mammalian cells. DNA Repair 3, 135–143 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. Hoskin, P. J. et al. Carbogen and nicotinamide in the treatment of bladder cancer with radical radiotherapy. Br. J. Cancer 76, 260–263 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hoskin, P. J., Rojas, A. M., Bentzen, S. M. & Saunders, M. I. Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J. Clin. Oncol. 28, 4912–4918 (2010).

    Article  PubMed  Google Scholar 

  56. Rhea, L. P., Mendez-Marti, S., Kim, D. & Aragon-Ching, J. B. Role of immunotherapy in bladder cancer. Cancer Treat. Res. Commun. 26, 100296 (2021).

    Article  PubMed  Google Scholar 

  57. Galsky, M. D. et al. Gemcitabine and cisplatin plus nivolumab as organ-sparing treatment for muscle-invasive bladder cancer: a phase 2 trial. Nat. Med. 29, 2825–2834 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhang, W. et al. Disruption of CTLA-4 expression on peripheral blood CD8 + T cell enhances anti-tumor efficacy in bladder cancer. Cancer Chemother. Pharmacol. 83, 911–920 (2019).

    Article  PubMed  CAS  Google Scholar 

  59. Zhen, S. et al. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget 8, 9634 (2017).

    Article  PubMed  Google Scholar 

  60. Zhen, S., Lu, J., Chen, W., Zhao, L. & Li, X. Synergistic antitumor effect on bladder cancer by rational combination of programmed cell death 1 blockade and CRISPR-Cas9-mediated long non-coding RNA urothelial carcinoma associated 1 knockout. Hum. Gene Ther. 29, 1352–1363 (2018).

    Article  PubMed  CAS  Google Scholar 

  61. Nandwani, A., Rathore, S. & Datta, M. LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Lett. 501, 162–171 (2021).

    Article  PubMed  CAS  Google Scholar 

  62. He, Z. X. et al. Current development of CBP/p300 inhibitors in the last decade. Eur. J. Med. Chem. 209, 112861 (2021).

    Article  PubMed  CAS  Google Scholar 

  63. Liu, Y. et al. Synthesizing and gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat. Commun. 5, 5393 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Li, J. et al. A CRISPR interference of CBP and p300 selectively induced synthetic lethality in bladder cancer cells in vitro. Int. J. Biol. Sci. 15, 1276 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, M. et al. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11, 1913 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Rose, T. L. et al. Phase II trial of palbociclib in patients with metastatic urothelial cancer after failure of first-line chemotherapy. Br. J. Cancer 119, 801–807 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tong, Z. et al. Functional genomics identifies predictive markers and clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer. J. Exp. Clin. Cancer Res. 38, 1–14 (2019).

    Article  CAS  Google Scholar 

  68. He, Z., He, J. & Xie, K. KLF4 transcription factor in tumorigenesis. Cell Death Discov. 9, 118 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xu, X. et al. CRISPR-ON-Mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo. Oncotarget 8, 10278 (2017).

    Article  Google Scholar 

  70. Chen, L. J. et al. The role of lysine-specific demethylase 6 A (KDM6A) in tumorigenesis and its therapeutic potentials in cancer therapy. Bioorg. Chem. 133, 106409 (2023).

    Article  PubMed  CAS  Google Scholar 

  71. Matar, M. et al. Implication of KDM6A in bladder cancer. Pharmacogenomics 24, 509–522 (2023).

    Article  PubMed  CAS  Google Scholar 

  72. Ahn, J. et al. Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer. Oncotarget 7, 63252 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ler, L. D. et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci. Transl Med. 9, eaai8312 (2017).

    Article  PubMed  Google Scholar 

  74. Lang, A. et al. Contingencies of UTX/KDM6A action in urothelial carcinoma. Cancers 11, 481 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhuang, C. et al. Engineered CRISPR/Cas13d Sensing hTERT Selectively Inhibits the Progression of Bladder Cancer In Vitro. Front. Mol. Biosci. 8, 646412 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hillary, V. E. & Ceasar, S. A. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol. Biotechnol. 65, 311–325 (2023).

    Article  PubMed  CAS  Google Scholar 

  77. Zhang, R., Xia, L. Q., Lu, W. W., Zhang, J. & Zhu, J. S. LncRNAs and cancer. Oncol. Lett. 12, 1233–1239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xie, J. et al. LncRNA SNHG3 enhances BMI1 mRNA stability by binding and regulating c-MYC: Implications for the carcinogenic role of SNHG3 in bladder cancer. Cancer Med. 12, 5718–5735 (2023).

    Article  PubMed  CAS  Google Scholar 

  79. Tortora, D. et al. A genome-wide CRISPR screen maps endogenous regulators of PPARG gene expression in bladder cancer. iScience 26, 106525 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Frangoul, H. et al. Safety and efficacy of CTX001 in patients with transfusion-dependent β-thalassemia and sickle cell disease: early results from the Climb THAL-111 and Climb SCD-121 studies of autologous CRISPR-CAS9-modified CD34+ hematopoietic stem and progenitor cells. Blood 136 (Suppl. 1), 3–4 (2020).

    Article  Google Scholar 

  81. Hu, Y. et al. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia. Clin. Cancer Res. 27, 2764–2772 (2021).

    Article  PubMed  CAS  Google Scholar 

  82. Tsimberidou, A. M. et al. T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. J. Hematol. Oncol. 14, 102 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Tan, E., Gakhar, N. & Kirtane, K. TCR gene-engineered cell therapy for solid tumors. Best Prac. Res. Clin. Haematol. 34, 101285 (2021).

    Article  CAS  Google Scholar 

  84. He, J. et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response. Cell Res. 32, 530–542 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Foy, S. P. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 615, 687–696 (2023).

    Article  PubMed  CAS  Google Scholar 

  86. Wachsmann, T. L. A. et al. Comparing CAR and TCR engineered T cell performance as a function of tumor cell exposure. Oncoimmunology 11, 2033528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang, D. et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 17, 777–787 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04426669 (2023).

  89. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05795595 (2024).

  90. Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).

    Article  PubMed  CAS  Google Scholar 

  91. Yang, Y., Xu, J., Ge, S. & Lai, L. CRISPR/Cas: advances, limitations, and applications for precision cancer research. Front. Med. 8, 649896 (2021).

    Article  Google Scholar 

  92. Wang, S. W. et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol. Cancer 21, 57 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  PubMed  CAS  Google Scholar 

  94. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  PubMed  CAS  Google Scholar 

  95. Aimo, A. et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat. Rev. Cardiol. 19, 655–667 (2022).

    Article  PubMed  CAS  Google Scholar 

  96. Sýkora, P. Germline Gene Therapy in the Era of Precise Genome Editing: How Far Should We Go? in The Ethics of Reproductive Genetics Philosophy and Medicine Ch. 11 (ed. Soniewicka, M.) 157-171 (Springer, 2018).

  97. Jiang, F. & Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  PubMed  CAS  Google Scholar 

  98. Brokowski, C. & Adli, M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J. Mol. Biol. 431, 88–101 (2019).

    Article  PubMed  CAS  Google Scholar 

  99. Dang, Y. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 16, 1–10 (2015).

    Article  CAS  Google Scholar 

  100. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Gong, S., Yu, H. H., Johnson, K. A. & Taylor, D. W. DNA unwinding is the primary determinant of CRISPR-Cas9 activity. Cell Rep. 22, 359–371 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Davis, A. J. & Chen, D. J. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2, 130 (2013).

    PubMed  CAS  Google Scholar 

  104. Liang, F., Han, M., Romanienko, P. J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl Acad. Sci. USA 95, 5172–5177 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 25, 1234–1257 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.J.S. researched data for the article. D.J.S. contributed substantially to discussion of the content. D.J.S. wrote the article. S.L., A.D.A., S.N., T.A.D.S., K.J.R., P.J.H. and A.C. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Danielle J. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Michele Hoffmann, Yu-chen Liu, Mads Daugaard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, D.J., Lunj, S., Adamson, A.D. et al. CRISPR–Cas9 potential for identifying novel therapeutic targets in muscle-invasive bladder cancer. Nat Rev Urol 22, 55–65 (2025). https://doi.org/10.1038/s41585-024-00901-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-024-00901-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer