Abstract
Cells, the fundamental units of life, orchestrate intricate functions — motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the ‘sensor–processor–actuator’ paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).
Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).
Ganti, T. The Principles of Life (Oxford Univ. Press, 2003).
Lai, Y.-C. & Chen, I. A. Protocells. Curr. Biol. 30, R482–R485 (2020).
Schwille, P. & Diez, S. Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 44, 223–242 (2009).
Benner, S. A. & Sismour, A. M. Synthetic biology. Nat. Rev. Genet. 6, 533–543 (2005).
Bashor, C. J., Horwitz, A. A., Peisajovich, S. G. & Lim, W. A. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu. Rev. Biophys. 39, 515–537 (2010).
Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 1, 514–525 (2012).
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).
Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).
Schwille, P. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333, 1252–1254 (2011).
Göpfrich, K., Platzman, I. & Spatz, J. P. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic cells. Trends Biotechnol. 36, 938–951 (2018).
Schwille, P. et al. MaxSynBio: avenues towards creating cells from the bottom up. Angew. Chem. Int. Ed. 57, 13382–13392 (2018).
Śmigiel, W. M., Lefrançois, P. & Poolman, B. Physicochemical considerations for bottom-up synthetic biology. Emerg. Top. Life Sci. 3, 445–458 (2019).
Guindani, C., da Silva, L. C., Cao, S., Ivanov, T. & Landfester, K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems. Angew. Chem. Int. Ed. 61, e202110855 (2022).
Hirschi, S., Ward, T. R., Meier, W. P., Müller, D. J. & Fotiadis, D. Synthetic biology: bottom-up assembly of molecular systems. Chem. Rev. 122, 16294–16328 (2022).
Salehi-Reyhani, A., Ces, O. & Elani, Y. Artificial cell mimics as simplified models for the study of cell biology. Exp. Biol. Med. 242, 1309–1317 (2017).
Buddingh, B. C. & van Hest, J. C. M. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50, 769–777 (2017).
Lyu, Y. et al. Protocells programmed through artificial reaction networks. Chem. Sci. 11, 631–642 (2020).
Gözen, İ. A hypothesis for protocell division on the early earth. ACS Nano 13, 10869–10871 (2019).
Ianeselli, A. et al. Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells. Nat. Chem. 14, 32–39 (2022).
Chen, I. A., Salehi-Ashtiani, K. & Szostak, J. W. RNA catalysis in model protocell vesicles. J. Am. Chem. Soc. 127, 13213–13219 (2005).
Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).
Sato, W., Zajkowski, T., Moser, F. & Adamala, K. P. Synthetic cells in biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14, e1761 (2022).
Mukwaya, V., Mann, S. & Dou, H. Chemical communication at the synthetic cell/living cell interface. Commun. Chem. 4, 161 (2021).
Liu, S. et al. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020).
Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).
Udono, H., Gong, J., Sato, Y. & Takinoue, M. DNA droplets: intelligent, dynamic fluid. Adv. Biol. 7, 2200180 (2023).
Liu, S., Zhang, C., Yang, F., Guo, Z. & Liu, Q. Construction of artificial cells utilizing DNA nanotechnology. Curr. Chin. Sci. 2, 213–223 (2022).
Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).
Keller, A. & Linko, V. Challenges and perspectives of DNA nanostructures in biomedicine. Angew. Chem. Int. Ed. 59, 15818–15833 (2020).
Madsen, M. & Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 119, 6384–6458 (2019).
Dey, S. et al. DNA origami. Nat. Rev. Methods Prim. 1, 13 (2021).
Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).
Lu, Y. & Liu, J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr. Opin. Biotechnol. 17, 580–588 (2006).
Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).
Li, Z., Wang, J. & Willner, I. Transient out-of-equilibrium nucleic acid-based dissipative networks and their applications. Adv. Funct. Mater. 32, 2200799 (2022).
Del Grosso, E., Franco, E., Prins, L. J. & Ricci, F. Dissipative DNA nanotechnology. Nat. Chem. 14, 600–613 (2022).
Deng, J. & Walther, A. ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 32, 2002629 (2020).
Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).
Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).
Lapteva, A. P., Sarraf, N. & Qian, L. DNA strand-displacement temporal logic circuits. J. Am. Chem. Soc. 144, 12443–12449 (2022).
Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).
Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103 (2011).
Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).
Bujold, K. E., Lacroix, A. & Sleiman, H. F. DNA nanostructures at the interface with biology. Chem 4, 495–521 (2018).
Lacroix, A. & Sleiman, H. F. DNA nanostructures: current challenges and opportunities for cellular delivery. ACS Nano 15, 3631–3645 (2021).
Zhang, T. et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15, 2728–2757 (2020).
Ma, W. et al. The biological applications of DNA nanomaterials: current challenges and future directions. Sig. Transduct. Target. Ther. 6, 351 (2021).
Walther, A. Viewpoint: from responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater. 32, 1905111 (2020).
Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).
Lopez, A. & Liu, J. DNA oligonucleotide-functionalized liposomes: bioconjugate chemistry, biointerfaces, and applications. Langmuir 34, 15000–15013 (2018).
Gubu, A. et al. Nucleic acid amphiphiles: synthesis, properties, and applications. Mol. Ther. Nucleic Acids 33, 144–163 (2023).
Fornasier, F., Souza, L. M. P., Souza, F. R., Reynaud, F. & Pimentel, A. S. Lipophilicity of coarse-grained cholesterol models. J. Chem. Inf. Model. 60, 569–577 (2020).
Knieß, R., Leeder, W.-M., Reißig, P., Geyer, F. K. & Göringer, H. U. Core-shell DNA-cholesterol nanoparticles exert lysosomolytic activity in African trypanosomes. ChemBioChem 23, e202200410 (2022).
Ohmann, A. et al. Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Res. 47, 11441–11451 (2019).
Bunge, A. et al. Lipid membranes carrying lipophilic cholesterol-based oligonucleotides — characterization and application on layer-by-layer coated particles. J. Phys. Chem. B 113, 16425–16434 (2009).
Yang, S.-T., Kreutzberger, A. J. B., Lee, J., Kiessling, V. & Tamm, L. K. The role of cholesterol in membrane fusion. Chem. Phys. Lipids 199, 136–143 (2016).
Beales, P. A. & Vanderlick, T. K. Partitioning of membrane-anchored DNA between coexisting lipid phases. J. Phys. Chem. B 113, 13678–13686 (2009).
Bunge, A. et al. Lipophilic oligonucleotides spontaneously insert into lipid membranes, bind complementary DNA strands, and sequester into lipid-disordered domains. Langmuir 23, 4455–4464 (2007).
Arulkumaran, N., Singer, M., Howorka, S. & Burns, J. R. Creating complex protocells and prototissues using simple DNA building blocks. Nat. Commun. 14, 1314 (2023).
Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).
Groeer, S., Garni, M., Samanta, A. & Walther, A. Insertion of 3D DNA origami nanopores into block copolymer vesicles. ChemSystemsChem 4, e202200009 (2022).
Lanphere, C. et al. Design, assembly, and characterization of membrane-spanning DNA nanopores. Nat. Protoc. 16, 86–130 (2021).
Ishikawa, D. et al. DNA origami nanoplate-based emulsion with nanopore function. Angew. Chem. Int. Ed. 58, 15299–15303 (2019).
Daljit Singh, J. K. et al. Minimizing cholesterol-induced aggregation of membrane-interacting DNA origami nanostructures. Membranes 11, 950 (2021).
Singh, J. et al. Binding of DNA origami to lipids: maximizing yield and switching via strand displacement. Nucleic Acids Res. 49, 10835–10850 (2021).
Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).
Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).
Burns, J. R., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013). This pioneering work describes the formation of a transmembrane channel by insertion of a cholesterol-functionalized six-helix bundle nanopore.
Gopfrich, K. et al. Large-conductance transmembrane porin made from DNA origami. ACS Nano 10, 8207–8214 (2016).
Birkholz, O. et al. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 9, 1521 (2018).
Lanphere, C. et al. Triggered assembly of a DNA-based membrane channel. J. Am. Chem. Soc. 144, 4333–4344 (2022).
Johnston, A. P., Mitomo, H., Read, E. S. & Caruso, F. Compositional and structural engineering of DNA multilayer films. Langmuir 22, 3251–3258 (2006).
Fujii, A. et al. Cross-linked DNA capsules templated on porous calcium carbonate microparticles. Colloids Surf. A Physicochem. Eng. Asp. 356, 126–133 (2010).
Huang, F. et al. Light-responsive and pH-responsive DNA microcapsules for controlled release of loads. J. Am. Chem. Soc. 138, 8936–8945 (2016).
Lilienthal, S., Fischer, A., Liao, W.-C., Cazelles, R. & Willner, I. Single and bilayer polyacrylamide hydrogel-based microcapsules for the triggered release of loads, logic gate operations, and intercommunication between microcapsules. ACS Appl. Mater. Interfaces 12, 31124–31136 (2020).
Sato, Y. & Takinoue, M. Capsule-like DNA hydrogels with patterns formed by lateral phase separation of DNA nanostructures. JACS Au 2, 159–168 (2022).
Teif, V. B. & Bohinc, K. Condensed DNA: condensing the concepts. Prog. Biophys. Mol. Biol. 105, 208–222 (2011).
Shchukin, D. G., Patel, A. A., Sukhorukov, G. B. & Lvov, Y. M. Nanoassembly of biodegradable microcapsules for DNA encasing. J. Am. Chem. Soc. 126, 3374–3375 (2004).
Smirnov, I. V., Dimitrov, S. I. & Makarov, V. L. Polyamine-DNA interactions. Condensation of chromatin and naked DNA. J. Biomol. Struct. Dyn. 5, 1149–1161 (1988).
Rudiuk, S., Yoshikawa, K. & Baigl, D. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length. J. Colloid Interface Sci. 368, 372–377 (2012).
Estévez-Torres, A. & Baigl, D. DNA compaction: fundamentals and applications. Soft Matter 7, 6746–6756 (2011).
Estévez-Torres, A. et al. Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder. Proc. Natl Acad. Sci. USA 106, 12219–12223 (2009).
Muzzopappa, F., Hertzog, M. & Erdel, F. DNA length tunes the fluidity of DNA-based condensates. Biophys. J. 120, 1288–1300 (2021).
Tsumoto, K. et al. Does DNA exert an active role in generating cell-sized spheres in an aqueous solution with a crowding binary polymer? Life 5, 459–466 (2015).
Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).
Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).
Masukawa, M. K. et al. Water-in-water droplets selectively uptake self-assembled DNA nano/microstructures: a versatile method for purification in DNA nanotechnology. ChemBioChem 23, e202200240 (2022).
Albertsson, P.-Å. Partition studies on nucleic acids: I. Influence of electrolytes, polymer concentration and nucleic acid conformation on the partition in the dextran-polyethylene glycol system. Biochim. Biophys. Acta 103, 1–12 (1965).
Ben Ayed, E. et al. Water-in-water emulsion gels stabilized by cellulose nanocrystals. Langmuir 34, 6887–6893 (2018).
Song, Y. et al. Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nat. Commun. 7, 12934 (2016).
Rowland, A. T. & Keating, C. D. Formation and properties of liposome-stabilized all-aqueous emulsions based on PEG/dextran, PEG/Ficoll, and PEG/sulfate aqueous biphasic systems. Soft Matter 17, 3688–3699 (2021).
Sakuta, H. et al. Self-emergent protocells generated in an aqueous solution with binary macromolecules through liquid-liquid phase separation. ChemBioChem 21, 3323–3328 (2020).
Biffi, S. et al. Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proc. Natl Acad. Sci. USA 110, 15633–15637 (2013).
Rovigatti, L., Smallenburg, F., Romano, F. & Sciortino, F. Gels of DNA nanostars never crystallize. ACS Nano 8, 3567–3574 (2014).
Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).
Bomboi, F. et al. Re-entrant DNA gels. Nat. Commun. 7, 13191 (2016).
Agarwal, S., Osmanovic, D., Klocke, M. A. & Franco, E. The growth rate of DNA condensate droplets increases with the size of participating subunits. ACS Nano 16, 11842–11851 (2022).
Sato, Y., Sakamoto, T. & Takinoue, M. Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Sci. Adv. 6, eaba3471 (2020). The article offers deep insights into the design criteria, switching behaviour and multiphase structures of DNA nanostar-based all-DNA synthetic cells and organelles.
Brady, R. A., Brooks, N. J., Cicuta, P. & Di Michele, L. Crystallization of amphiphilic DNA C-stars. Nano Lett. 17, 3276–3281 (2017).
Nguyen, D. T., Jeon, B.-j, Abraham, G. R. & Saleh, O. A. Length-dependence and spatial structure of DNA partitioning into a DNA liquid. Langmuir 35, 14849–14854 (2019).
Saleh, O. A., Jeon, B.-j & Liedl, T. Enzymatic degradation of liquid droplets of DNA is modulated near the phase boundary. Proc. Natl Acad. Sci. USA 117, 16160–16166 (2020).
Jeon, B.-j, Nguyen, D. T. & Saleh, O. A. Sequence-controlled adhesion and microemulsification in a two-phase system of DNA liquid droplets. J. Phys. Chem. B 124, 8888–8895 (2020).
Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).
Park, N., Um, S. H., Funabashi, H., Xu, J. & Luo, D. A cell-free protein-producing gel. Nat. Mater. 8, 432–437 (2009).
Lee, T., Do, S., Lee, J. G., Kim, D.-N. & Shin, Y. The flexibility-based modulation of DNA nanostar phase separation. Nanoscale 13, 17638–17647 (2021).
Leathers, A. et al. Reaction–diffusion patterning of DNA-based artificial cells. J. Am. Chem. Soc. 144, 17468–17476 (2022). The article describes a system-level integration of layered functionalization of DNA nanostar-based synthetic cells with functional layers that allow to channel RNA information between different layers.
Conrad, N., Chang, G., Fygenson, D. K. & Saleh, O. A. Emulsion imaging of a DNA nanostar condensate phase diagram reveals valence and electrostatic effects. J. Chem. Phys. 157, 234203 (2022).
Agarwal, S., Dizani, M., Osmanovic, D. & Franco, E. Light-controlled growth of DNA organelles in synthetic cells. Interface Focus 13, 20230017 (2023).
Masukawa, M. K., Okuda, Y. & Takinoue, M. Aqueous triple-phase system in microwell array for generating uniform-sized DNA hydrogel particles. Front. Genet. 12, 705022 (2021).
Merindol, R., Delechiave, G., Heinen, L., Catalani, L. H. & Walther, A. Modular design of programmable mechanofluorescent DNA hydrogels. Nat. Commun. 10, 528 (2019).
Huang, Y., Xu, W., Liu, G. & Tian, L. A pure DNA hydrogel with stable catalytic ability produced by one-step rolling circle amplification. Chem. Commun. 53, 3038–3041 (2017).
Xu, W. et al. DNA hydrogel with tunable pH-responsive properties produced by rolling circle amplification. Chem. Eur. J. 23, 18276–18281 (2017).
Kim, J., Kim, D. & Lee, J. B. DNA aptamer-based carrier for loading proteins and enhancing the enzymatic activity. RSC Adv. 7, 1643–1645 (2017).
Deng, J. & Walther, A. Programmable ATP-fueled DNA coacervates by transient liquid-liquid phase separation. Chem 6, 3329–3343 (2020).
Liu, W., Samanta, A., Deng, J., Akintayo, C. O. & Walther, A. Mechanistic insights into the phase separation behavior and pathway-directed information exchange in all-DNA droplets. Angew. Chem. Int. Ed. 61, e202208951 (2022).
Ludwanowski, S., Samanta, A., Loescher, S., Barner-Kowollik, C. & Walther, A. A modular fluorescent probe for viscosity and polarity sensing in DNA hybrid mesostructures. Adv. Sci. 8, 2003740 (2021).
Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018). A pioneering work describes the formation of all-DNA synthetic cells based on temperature-induced liquid–liquid phase separation, resulting in the formation of core–shell structures with a liquid and crowded ssDNA solution in a DNA hydrogel shell.
Merindol, R., Martin, N., Beneyton, T., Baret, J.-C. & Ravaine, S. Fast and ample light controlled actuation of monodisperse all-DNA microgels. Adv. Funct. Mater. 31, 2010396 (2021).
Franquelim, H. G., Khmelinskaia, A., Sobczak, J.-P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).
Grome, M. W., Zhang, Z., Pincet, F. & Lin, C. Vesicle tubulation with self-assembling DNA nanosprings. Angew. Chem. Int. Ed. 57, 5330–5334 (2018).
Journot, C. M. A., Ramakrishna, V., Wallace, M. I. & Turberfield, A. J. Modifying membrane morphology and interactions with DNA origami clathrin-mimic networks. ACS Nano 13, 9973–9979 (2019).
Franquelim, H. G., Dietz, H. & Schwille, P. Reversible membrane deformations by straight DNA origami filaments. Soft Matter 17, 276–287 (2021).
Diederichs, T. et al. Principles of small-molecule transport through synthetic nanopores. ACS Nano 15, 16194–16206 (2021).
Chidchob, P. et al. Spatial presentation of cholesterol units on a DNA cube as a determinant of membrane protein-mimicking functions. J. Am. Chem. Soc. 141, 1100–1108 (2019).
Göpfrich, K. et al. Ion channels made from a single membrane-spanning DNA duplex. Nano Lett. 16, 4665–4669 (2016).
Fragasso, A. et al. Reconstitution of ultrawide DNA origami pores in liposomes for transmembrane transport of macromolecules. ACS Nano 15, 12768–12779 (2021).
Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012). This pioneering work describes the insertion of a DNA origami nanopore into liposomes.
Diederichs, T. et al. Synthetic protein-conductive membrane nanopores built with DNA. Nat. Commun. 10, 5018 (2019).
Xing, Y., Dorey, A., Jayasinghe, L. & Howorka, S. Highly shape- and size-tunable membrane nanopores made with DNA. Nat. Nanotechnol. 17, 708–713 (2022).
Cochereau, R., Maffeis, V., dos Santos, E. C., Lörtscher, E. & Palivan, C. G. Polymeric giant unilamellar vesicles with integrated DNA-origami nanopores: an efficient platform for tuning bioreaction dynamics through controlled molecular diffusion. Adv. Funct. Mater. 33, 2304782 (2023).
Li, Y. et al. Leakless end-to-end transport of small molecules through micron-length DNA nanochannels. Sci. Adv. 8, eabq4834 (2022).
Shi, X. et al. A DNA turbine powered by a transmembrane potential across a nanopore. Nat. Nanotechnol. 19, 338–344 (2023).
Iwabuchi, S., Kawamata, I., Murata, S. & Nomura, S.-I. M. A large, square-shaped, DNA origami nanopore with sealing function on a giant vesicle membrane. Chem. Commun. 57, 2990–2993 (2021).
Lanphere, C., Arnott, P. M., Jones, S. F., Korlova, K. & Howorka, S. A biomimetic DNA-based membrane gate for protein-controlled transport of cytotoxic drugs. Angew. Chem. Int. Ed. 60, 1903–1908 (2021).
Dey, S. et al. A reversibly gated protein-transporting membrane channel made of DNA. Nat. Commun. 13, 2271 (2022).
Liu, G. et al. DNA-based artificial signaling system mimicking the dimerization of receptors for signal transduction and amplification. Anal. Chem. 93, 13807–13814 (2021).
Chen, H. et al. Controlled dimerization of artificial membrane receptors for transmembrane signal transduction. Chem. Sci. 12, 8224–8230 (2021).
Chen, H. et al. DNA-based artificial receptors as transmembrane signal transduction systems for protocellular communication. Angew. Chem. Int. Ed. 62, e202301559 (2023).
Kanwa, N., Gavrilovic, S., Brüggenthies, G. A., Qutbuddin, Y. & Schwille, P. Inducing lipid domains in membranes by self-assembly of DNA origami. Adv. Mater. Interfaces 10, 2202500 (2023).
Rubio-Sánchez, R., Mognetti, B. M., Cicuta, P. & Di Michele, L. DNA-origami line-actants control domain organization and fission in synthetic membranes. J. Am. Chem. Soc. 145, 11265–11275 (2023).
Hernández-Ainsa, S. et al. Controlling the reversible assembly of liposomes through a multistimuli responsive anchored DNA. Nano Lett. 16, 4462–4466 (2016).
Jakobsen, U., Rosholm, K. R. & Vogel, S. Design, synthesis and membrane anchoring strength of lipidated polyaza crown ether DNA-conjugates (LiNAs) studied by DNA-controlled assembly of liposomes. Org. Biomol. Chem. 20, 9460–9468 (2022).
Stengel, G., Zahn, R. & Höök, F. DNA-induced programmable fusion of phospholipid vesicles. J. Am. Chem. Soc. 129, 9584–9585 (2007). This pioneering work describes DNA-mediated fusion of small liposomes using DNA zipper geometries located at the outer membrane side.
Chan, Y.-H. M., van Lengerich, B. & Boxer, S. G. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3, FA17–FA21 (2008).
Wang, C., Yan, A., Wang, H., Su, Y. & Li, D. DNA-mediated membrane fusion and its biological applications: sensing, reaction control and drug delivery. Anal. Sens. 2, e202200024 (2022).
Li, Z. et al. Dynamic fusion of nucleic acid functionalized nano-/micro-cell-like containments: from basic concepts to applications. ACS Nano 17, 15308–15327 (2023).
Peruzzi, J. A., Jacobs, M. L., Vu, T. Q., Wang, K. S. & Kamat, N. P. Barcoding biological reactions with DNA-functionalized vesicles. Angew. Chem. Int. Ed. 58, 18683–18690 (2019).
Löffler, P. M. G. et al. A DNA-programmed liposome fusion cascade. Angew. Chem. Int. Ed. 56, 13228–13231 (2017).
Jumeaux, C. et al. Detection of microRNA biomarkers via inhibition of DNA-mediated liposome fusion. Nanoscale Adv. 1, 532–536 (2019).
Jumeaux, C. et al. MicroRNA detection by DNA-mediated liposome fusion. ChemBioChem 19, 434–438 (2018).
Huang, F. et al. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem. Sci. 11, 5592–5600 (2020).
Huang, F. et al. Three compartment liposome fusion: functional protocells for biocatalytic cascades and operation of dynamic DNA machineries. Adv. Funct. Mater. 33, 2302814 (2023).
Xie, M. et al. DNA zipper mediated membrane fusion for rapid exosomal miRNA detection. Anal. Chem. 94, 13043–13051 (2022).
Lyu, Y. et al. Constructing smart protocells with built-in DNA computational core to eliminate exogenous challenge. J. Am. Chem. Soc. 140, 6912–6920 (2018).
Agarwal, S., Klocke, M. A., Pungchai, P. E. & Franco, E. Dynamic self-assembly of compartmentalized DNA nanotubes. Nat. Commun. 12, 3557 (2021). This pioneering work discusses the build-up of DNA nanotube-based cytoskeletons in water-in-oil compartments and their autonomous operation using transcription-based regulatory circuits.
Jahnke, K., Huth, V., Mersdorf, U., Liu, N. & Göpfrich, K. Bottom-up assembly of synthetic cells with a DNA cytoskeleton. ACS Nano 16, 7233–7241 (2022).
Burns, J. R. Introducing bacteria and synthetic biomolecules along engineered DNA fibers. Small 17, 2100136 (2021).
Jahnke, K. et al. DNA origami signaling units transduce chemical and mechanical signals in synthetic cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202301176 (2023).
Pacella, M. S. et al. Characterizing the length-dependence of DNA nanotube end-to-end joining rates. Mol. Syst. Des. Eng. 5, 544–558 (2020).
Schaffter, S. W. et al. Reconfiguring DNA nanotube architectures via selective regulation of terminating structures. ACS Nano 14, 13451–13462 (2020).
Mohammed, A. M., Šulc, P., Zenk, J. & Schulman, R. Self-assembling DNA nanotubes to connect molecular landmarks. Nat. Nanotechnol. 12, 312–316 (2017).
Zhan, P., Jahnke, K., Liu, N. & Göpfrich, K. Functional DNA-based cytoskeletons for synthetic cells. Nat. Chem. 14, 958–963 (2022). The article describes a system-level integration to use DNA filament-based cytoskeletons as track for autonomous motion of cargo nanoparticles using DNA walker concepts.
Baumann, K. N. et al. Coating and stabilization of liposomes by clathrin-inspired DNA self-assembly. ACS Nano 14, 2316–2323 (2020).
Baumann, K. N. et al. DNA–liposome hybrid carriers for triggered cargo release. ACS Appl. Bio Mater. 5, 3713–3721 (2022).
Kurokawa, C. et al. DNA cytoskeleton for stabilizing artificial cells. Proc. Natl Acad. Sci. USA 114, 7228–7233 (2017).
Zhao, Q.-H., Cao, F.-H., Luo, Z.-H., Huck, W. T. S. & Deng, N.-N. Photoswitchable molecular communication between programmable DNA-based artificial membraneless organelles. Angew. Chem. Int. Ed. 61, e202117500 (2022).
Tran, M. P. et al. A DNA segregation module for synthetic cells. Small 19, e2202711 (2022).
Saleh, O. A., Wilken, S., Squires, T. M. & Liedl, T. Vacuole dynamics and popping-based motility in liquid droplets of DNA. Nat. Commun. 14, 3574 (2023).
Deng, N.-N. & Huck, W. T. S. Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew. Chem. Int. Ed. 56, 9736–9740 (2017).
Long, M. S., Jones, C. D., Helfrich, M. R., Mangeney-Slavin, L. K. & Keating, C. D. Dynamic microcompartmentation in synthetic cells. Proc. Natl Acad. Sci. USA 102, 5920–5925 (2005).
Liu, W., Lupfer, C., Samanta, A., Sarkar, A. & Walther, A. Switchable hydrophobic pockets in DNA protocells enhance chemical conversion. J. Am. Chem. Soc. 145, 7090–7094 (2023).
Walczak, M. et al. Responsive core-shell DNA particles trigger lipid-membrane disruption and bacteria entrapment. Nat. Commun. 12, 4743 (2021).
Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).
Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).
Alam, M. T. et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun. 8, 16018 (2017).
Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).
van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).
Berhanu, S., Ueda, T. & Kuruma, Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10, 1325 (2019).
Lee, K. Y. et al. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36, 530–535 (2018).
Adir, O. et al. Synthetic cells with self-activating optogenetic proteins communicate with natural cells. Nat. Commun. 13, 2328 (2022).
Lakin, M. R., Youssef, S., Polo, F., Emmott, S. & Phillips, A. Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011).
Aubert, N., Mosca, C., Fujii, T., Hagiya, M. & Rondelez, Y. Computer-assisted design for scaling up systems based on DNA reaction networks. J. R. Soc. Interface 11, 20131167 (2014).
Banda, P. & Teuscher, C. COEL: a cloud-based reaction network simulator. Front. Robot. AI 3, https://doi.org/10.3389/frobt.2016.00013 (2016).
Joesaar, A. et al. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369–378 (2019). This pioneering work establishes a sender–receiver communication with negative feedback between different populations of DNA-based synthetic cells using dynamic DNA strand displacement reactions.
Huang, X., Patil, A. J., Li, M. & Mann, S. Design and construction of higher-order structure and function in proteinosome-based protocells. J. Am. Chem. Soc. 136, 9225–9234 (2014).
Yang, S. et al. Light-activated signaling in DNA-encoded sender–receiver architectures. ACS Nano 14, 15992–16002 (2020).
Sharma, C., Samanta, A., Schmidt, R. S. & Walther, A. DNA-based signaling networks for transient colloidal co-assemblies. J. Am. Chem. Soc. 145, 17819–17830 (2023).
Groeer, S., Schumann, K., Loescher, S. & Walther, A. Molecular communication relays for dynamic cross-regulation of self-sorting fibrillar self-assemblies. Sci. Adv. 7, eabj5827 (2021).
Peng, R. et al. DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat. Commun. 11, 978 (2020).
Baccouche, A., Montagne, K., Padirac, A., Fujii, T. & Rondelez, Y. Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 67, 234–249 (2014).
Genot, A. J. et al. High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem. 8, 760 (2016).
Fujii, T. & Rondelez, Y. Predator–prey molecular ecosystems. ACS Nano 7, 27–34 (2013).
Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).
Padirac, A., Fujii, T., Estévez-Torres, A. & Rondelez, Y. Spatial waves in synthetic biochemical networks. J. Am. Chem. Soc. 135, 14586–14592 (2013).
Dehne, H., Reitenbach, A. & Bausch, A. R. Reversible and spatiotemporal control of colloidal structure formation. Nat. Commun. 12, 6811 (2021).
Gines, G. et al. Microscopic agents programmed by DNA circuits. Nat. Nanotechnol. 12, 351–359 (2017).
Zambrano, A. et al. Programmable synthetic cell networks regulated by tuneable reaction rates. Nat. Commun. 13, 3885 (2022).
Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).
Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7, 465 (2011).
Kim, J., Khetarpal, I., Sen, S. & Murray, R. M. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res. 42, 6078–6089 (2014).
Franco, E., Giordano, G., Forsberg, P.-O. & Murray, R. M. Negative autoregulation matches production and demand in synthetic transcriptional networks. ACS Synth. Biol. 3, 589–599 (2014).
Schaffter, S. W. & Schulman, R. Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nat. Chem. 11, 829–838 (2019).
Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-assembly. Nat. Chem. 11, 510–520 (2019).
Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem. 6, 295–302 (2014).
Yewdall, N. A., André, A. A. M., Lu, T. & Spruijt, E. Coacervates as models of membraneless organelles. Curr. Opin. Colloid Interface Sci. 52, 101416 (2021).
Fulton, A. B. How crowded is the cytoplasm? Cell 30, 345–347 (1982).
Ghosh, B., Bose, R. & Tang, T. Y. D. Can coacervation unify disparate hypotheses in the origin of cellular life? Curr. Opin. Colloid Interface Sci. 52, 101415 (2021).
Samanta, A., Sabatino, V., Ward, T. R. & Walther, A. Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nat. Nanotechnol. 15, 914–921 (2020). This pioneering work describes the use of genetically engineered artificial metalloenzymes in crowded all-DNA-based synthetic cells in which the catalysis led to growth of the synthetic cells, chemo-mechanical regulation, and fusion of synthetic cells.
Samanta, A., Hörner, M., Liu, W., Weber, W. & Walther, A. Signal-processing and adaptive prototissue formation in metabolic DNA protocells. Nat. Commun. 13, 3968 (2022).
Zhan, P. et al. Recent advances in DNA origami-engineered nanomaterials and applications. Chem. Rev. 123, 3976–4050 (2023).
Wang, F., Lu, C.-H. & Willner, I. From cascaded catalytic nucleic acids to enzyme–DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014).
Dong, Y. et al. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev. 120, 9420–9481 (2020).
Heinen, L. & Walther, A. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Sci. Adv. 5, eaaw0590 (2019).
Deng, J. & Walther, A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat. Commun. 12, 5132 (2021).
Loescher, S., Groeer, S. & Walther, A. 3D DNA origami nanoparticles: from basic design principles to emerging applications in soft matter and (bio-)nanosciences. Angew. Chem. Int. Ed. Engl. 57, 10436–10448 (2018).
Acknowledgements
We acknowledge funding by the Deutsche Forschungsgemeinschaft in WA 3084/19-1, and the Collaborative Research Center 1551 “Polymer Concepts in Cellular Function”. A.W. acknowledges funding via a Gutenberg Research Professorship underpinning his Life-Like Materials Program. A.S. acknowledges the support from IIT Roorkee for Faculty Initiation Grant (FIG-101023) and RSC Research Fund grant (R23-1045418311). A.S. and L.B.P. acknowledge personal grants by the Alexander von Humboldt Foundation. M.M. acknowledges funding through the European Union’s Horizon 2022 research and innovation programme under the Marie Skłodowska-Curie grant agreement DNAPC4ImunoMol-101111348.
Author information
Authors and Affiliations
Contributions
A.S. and A.W. researched data for the article, contributed to the discussion of content, writing and reviewing/editing the manuscript before submission. L.B. and M.M. researched data for the article, contributed to discussion of content, and writing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks S. Howorka, C. Garcia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Aptamers
-
Oligonucleotides that selectively bind a target ligand (for example, lysozyme, oncogenes, ATP and dopamine) and which are usually obtained by systematic in vitro selection procedures, commonly known as SELEX (Systematic Evolution of Ligands by EXponential enrichment).
- Aqueous two-phase emulsion systems
-
(ATPS). Spontaneous phase separation of a mixture of two polymers, a polymer and a kosmotropic salt, or two salts (one chaotropic and one kosmotropic) in water, used for the efficient separation of biomolecules.
- Bottom–up approach
-
An approach in which (bio)chemically synthesized components are assembled rather than extracted from biological entities to obtain a synthetic cell model.
- Chemical reaction networks
-
A set of interconnected chemical reactions that can give rise to complex behaviour (for example, oscillations), signal processing and chemical computation.
- Coacervates
-
Water-rich droplet phase formed by associative phase segregation of at least two interacting compounds or segregative phase separation of one compound.
- DNA nanostructures
-
Stable nanoscopic structures made exclusively from DNA using base-pairing interactions and various other structural tools of DNA nanotechnology, such as Holliday junctions, blunt-end stacking and triplex formation.
- DNA origami
-
Two-dimensional or three-dimensional, well-defined nanostructures assembled from a long circular ssDNA scaffold and a mixture of short ssDNA staples by duplex-mediated folding.
- DNAzyme
-
Catalytically active DNA molecules that are often used to cleave the phosphodiester bond in a RNA target molecule in the presence of certain metal ion cofactors.
- Dynamic strand displacement reaction
-
The dynamic strand displacement (DSD) reaction is the process by which an invader strand of longer complementarity hybridizes onto a double-stranded DNA (dsDNA) with incomplete hybridization, displacing the shorter of the previously hybridized strands. These reactions are driven by the length of the non-hybridized domains in the parent dsDNA, also known as toeholds. The result is a dsDNA with a higher thermodynamic stability, typically a longer dsDNA, and a released single-stranded DNA (ssDNA) previously bound in the dsDNA.
- Hybridization chain reaction
-
(HCR). An isothermal enzyme-free polymerization technique in which two sets of DNA hairpin molecules undergo a chain reaction in the presence of an initiator molecule containing a complementary domain of the toehold sequence of one of the hairpins and the loop of the other.
- Macromolecular crowding
-
Molecular crowding can occur in concentrated solutions of polymers and colloids to accelerate catalysis or induce self-assembly (for example, by depletion interactions) via nonspecific interactions.
- Nanopores
-
Channels that enable the transport of ions, small molecules or large macromolecules (for example, proteins) through lipid bilayer membranes, usually consisting of proteins or self-assembled macromolecules, such as DNA.
- Synthetic cells
-
Engineered microcompartments that aim to mimic aspects of the architecture, functions or behaviours of living cells.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Samanta, A., Baranda Pellejero, L., Masukawa, M. et al. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 8, 454–470 (2024). https://doi.org/10.1038/s41570-024-00606-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-024-00606-1