Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA-empowered synthetic cells as minimalistic life forms

Abstract

Cells, the fundamental units of life, orchestrate intricate functions — motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the ‘sensor–processor–actuator’ paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA as a structural component for synthetic cells based on liposomes, polymersomes, colloids and emulsions.
Fig. 2: DNA condensation to form all-DNA or DNA-rich synthetic cells.
Fig. 3: DNA to generate functional entities at the cell wall and in the lumen.
Fig. 4: Information processing in DNA synthetic cells with a metabolism for adaptive and interactive proto-ecologies.
Fig. 5: Future viewpoint on DNA nanotechnology in synthetic cell research.

Similar content being viewed by others

References

  1. Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Ganti, T. The Principles of Life (Oxford Univ. Press, 2003).

  4. Lai, Y.-C. & Chen, I. A. Protocells. Curr. Biol. 30, R482–R485 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Schwille, P. & Diez, S. Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 44, 223–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Benner, S. A. & Sismour, A. M. Synthetic biology. Nat. Rev. Genet. 6, 533–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bashor, C. J., Horwitz, A. A., Peisajovich, S. G. & Lim, W. A. Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu. Rev. Biophys. 39, 515–537 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 1, 514–525 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Schwille, P. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333, 1252–1254 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Göpfrich, K., Platzman, I. & Spatz, J. P. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic cells. Trends Biotechnol. 36, 938–951 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schwille, P. et al. MaxSynBio: avenues towards creating cells from the bottom up. Angew. Chem. Int. Ed. 57, 13382–13392 (2018).

    Article  CAS  Google Scholar 

  14. Śmigiel, W. M., Lefrançois, P. & Poolman, B. Physicochemical considerations for bottom-up synthetic biology. Emerg. Top. Life Sci. 3, 445–458 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guindani, C., da Silva, L. C., Cao, S., Ivanov, T. & Landfester, K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems. Angew. Chem. Int. Ed. 61, e202110855 (2022).

    Article  CAS  Google Scholar 

  16. Hirschi, S., Ward, T. R., Meier, W. P., Müller, D. J. & Fotiadis, D. Synthetic biology: bottom-up assembly of molecular systems. Chem. Rev. 122, 16294–16328 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Salehi-Reyhani, A., Ces, O. & Elani, Y. Artificial cell mimics as simplified models for the study of cell biology. Exp. Biol. Med. 242, 1309–1317 (2017).

    Article  CAS  Google Scholar 

  18. Buddingh, B. C. & van Hest, J. C. M. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50, 769–777 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lyu, Y. et al. Protocells programmed through artificial reaction networks. Chem. Sci. 11, 631–642 (2020).

    Article  CAS  Google Scholar 

  20. Gözen, İ. A hypothesis for protocell division on the early earth. ACS Nano 13, 10869–10871 (2019).

    Article  PubMed  Google Scholar 

  21. Ianeselli, A. et al. Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells. Nat. Chem. 14, 32–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, I. A., Salehi-Ashtiani, K. & Szostak, J. W. RNA catalysis in model protocell vesicles. J. Am. Chem. Soc. 127, 13213–13219 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sato, W., Zajkowski, T., Moser, F. & Adamala, K. P. Synthetic cells in biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14, e1761 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Mukwaya, V., Mann, S. & Dou, H. Chemical communication at the synthetic cell/living cell interface. Commun. Chem. 4, 161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, S. et al. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Udono, H., Gong, J., Sato, Y. & Takinoue, M. DNA droplets: intelligent, dynamic fluid. Adv. Biol. 7, 2200180 (2023).

    Article  CAS  Google Scholar 

  29. Liu, S., Zhang, C., Yang, F., Guo, Z. & Liu, Q. Construction of artificial cells utilizing DNA nanotechnology. Curr. Chin. Sci. 2, 213–223 (2022).

    Article  CAS  Google Scholar 

  30. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  PubMed  Google Scholar 

  31. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  32. Keller, A. & Linko, V. Challenges and perspectives of DNA nanostructures in biomedicine. Angew. Chem. Int. Ed. 59, 15818–15833 (2020).

    Article  CAS  Google Scholar 

  33. Madsen, M. & Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 119, 6384–6458 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Dey, S. et al. DNA origami. Nat. Rev. Methods Prim. 1, 13 (2021).

    Article  Google Scholar 

  35. Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).

    Article  CAS  Google Scholar 

  36. Lu, Y. & Liu, J. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr. Opin. Biotechnol. 17, 580–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Li, Z., Wang, J. & Willner, I. Transient out-of-equilibrium nucleic acid-based dissipative networks and their applications. Adv. Funct. Mater. 32, 2200799 (2022).

    Article  CAS  Google Scholar 

  39. Del Grosso, E., Franco, E., Prins, L. J. & Ricci, F. Dissipative DNA nanotechnology. Nat. Chem. 14, 600–613 (2022).

    Article  PubMed  Google Scholar 

  40. Deng, J. & Walther, A. ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 32, 2002629 (2020).

    Article  CAS  Google Scholar 

  41. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Lapteva, A. P., Sarraf, N. & Qian, L. DNA strand-displacement temporal logic circuits. J. Am. Chem. Soc. 144, 12443–12449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bujold, K. E., Lacroix, A. & Sleiman, H. F. DNA nanostructures at the interface with biology. Chem 4, 495–521 (2018).

    Article  CAS  Google Scholar 

  48. Lacroix, A. & Sleiman, H. F. DNA nanostructures: current challenges and opportunities for cellular delivery. ACS Nano 15, 3631–3645 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, T. et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat. Protoc. 15, 2728–2757 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ma, W. et al. The biological applications of DNA nanomaterials: current challenges and future directions. Sig. Transduct. Target. Ther. 6, 351 (2021).

    Article  CAS  Google Scholar 

  51. Walther, A. Viewpoint: from responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater. 32, 1905111 (2020).

    Article  CAS  Google Scholar 

  52. Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Lopez, A. & Liu, J. DNA oligonucleotide-functionalized liposomes: bioconjugate chemistry, biointerfaces, and applications. Langmuir 34, 15000–15013 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Gubu, A. et al. Nucleic acid amphiphiles: synthesis, properties, and applications. Mol. Ther. Nucleic Acids 33, 144–163 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fornasier, F., Souza, L. M. P., Souza, F. R., Reynaud, F. & Pimentel, A. S. Lipophilicity of coarse-grained cholesterol models. J. Chem. Inf. Model. 60, 569–577 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Knieß, R., Leeder, W.-M., Reißig, P., Geyer, F. K. & Göringer, H. U. Core-shell DNA-cholesterol nanoparticles exert lysosomolytic activity in African trypanosomes. ChemBioChem 23, e202200410 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ohmann, A. et al. Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Res. 47, 11441–11451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bunge, A. et al. Lipid membranes carrying lipophilic cholesterol-based oligonucleotides — characterization and application on layer-by-layer coated particles. J. Phys. Chem. B 113, 16425–16434 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, S.-T., Kreutzberger, A. J. B., Lee, J., Kiessling, V. & Tamm, L. K. The role of cholesterol in membrane fusion. Chem. Phys. Lipids 199, 136–143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beales, P. A. & Vanderlick, T. K. Partitioning of membrane-anchored DNA between coexisting lipid phases. J. Phys. Chem. B 113, 13678–13686 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Bunge, A. et al. Lipophilic oligonucleotides spontaneously insert into lipid membranes, bind complementary DNA strands, and sequester into lipid-disordered domains. Langmuir 23, 4455–4464 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Arulkumaran, N., Singer, M., Howorka, S. & Burns, J. R. Creating complex protocells and prototissues using simple DNA building blocks. Nat. Commun. 14, 1314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Groeer, S., Garni, M., Samanta, A. & Walther, A. Insertion of 3D DNA origami nanopores into block copolymer vesicles. ChemSystemsChem 4, e202200009 (2022).

    Article  CAS  Google Scholar 

  65. Lanphere, C. et al. Design, assembly, and characterization of membrane-spanning DNA nanopores. Nat. Protoc. 16, 86–130 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Ishikawa, D. et al. DNA origami nanoplate-based emulsion with nanopore function. Angew. Chem. Int. Ed. 58, 15299–15303 (2019).

    Article  CAS  Google Scholar 

  67. Daljit Singh, J. K. et al. Minimizing cholesterol-induced aggregation of membrane-interacting DNA origami nanostructures. Membranes 11, 950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh, J. et al. Binding of DNA origami to lipids: maximizing yield and switching via strand displacement. Nucleic Acids Res. 49, 10835–10850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burns, J. R., Stulz, E. & Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett. 13, 2351–2356 (2013). This pioneering work describes the formation of a transmembrane channel by insertion of a cholesterol-functionalized six-helix bundle nanopore.

    Article  CAS  PubMed  Google Scholar 

  72. Gopfrich, K. et al. Large-conductance transmembrane porin made from DNA origami. ACS Nano 10, 8207–8214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Birkholz, O. et al. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 9, 1521 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lanphere, C. et al. Triggered assembly of a DNA-based membrane channel. J. Am. Chem. Soc. 144, 4333–4344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Johnston, A. P., Mitomo, H., Read, E. S. & Caruso, F. Compositional and structural engineering of DNA multilayer films. Langmuir 22, 3251–3258 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Fujii, A. et al. Cross-linked DNA capsules templated on porous calcium carbonate microparticles. Colloids Surf. A Physicochem. Eng. Asp. 356, 126–133 (2010).

    Article  CAS  Google Scholar 

  77. Huang, F. et al. Light-responsive and pH-responsive DNA microcapsules for controlled release of loads. J. Am. Chem. Soc. 138, 8936–8945 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Lilienthal, S., Fischer, A., Liao, W.-C., Cazelles, R. & Willner, I. Single and bilayer polyacrylamide hydrogel-based microcapsules for the triggered release of loads, logic gate operations, and intercommunication between microcapsules. ACS Appl. Mater. Interfaces 12, 31124–31136 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Sato, Y. & Takinoue, M. Capsule-like DNA hydrogels with patterns formed by lateral phase separation of DNA nanostructures. JACS Au 2, 159–168 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Teif, V. B. & Bohinc, K. Condensed DNA: condensing the concepts. Prog. Biophys. Mol. Biol. 105, 208–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Shchukin, D. G., Patel, A. A., Sukhorukov, G. B. & Lvov, Y. M. Nanoassembly of biodegradable microcapsules for DNA encasing. J. Am. Chem. Soc. 126, 3374–3375 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Smirnov, I. V., Dimitrov, S. I. & Makarov, V. L. Polyamine-DNA interactions. Condensation of chromatin and naked DNA. J. Biomol. Struct. Dyn. 5, 1149–1161 (1988).

    Article  CAS  PubMed  Google Scholar 

  83. Rudiuk, S., Yoshikawa, K. & Baigl, D. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length. J. Colloid Interface Sci. 368, 372–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Estévez-Torres, A. & Baigl, D. DNA compaction: fundamentals and applications. Soft Matter 7, 6746–6756 (2011).

    Article  Google Scholar 

  85. Estévez-Torres, A. et al. Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder. Proc. Natl Acad. Sci. USA 106, 12219–12223 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Muzzopappa, F., Hertzog, M. & Erdel, F. DNA length tunes the fluidity of DNA-based condensates. Biophys. J. 120, 1288–1300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsumoto, K. et al. Does DNA exert an active role in generating cell-sized spheres in an aqueous solution with a crowding binary polymer? Life 5, 459–466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Masukawa, M. K. et al. Water-in-water droplets selectively uptake self-assembled DNA nano/microstructures: a versatile method for purification in DNA nanotechnology. ChemBioChem 23, e202200240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Albertsson, P.-Å. Partition studies on nucleic acids: I. Influence of electrolytes, polymer concentration and nucleic acid conformation on the partition in the dextran-polyethylene glycol system. Biochim. Biophys. Acta 103, 1–12 (1965).

    Article  CAS  PubMed  Google Scholar 

  92. Ben Ayed, E. et al. Water-in-water emulsion gels stabilized by cellulose nanocrystals. Langmuir 34, 6887–6893 (2018).

    Article  PubMed  Google Scholar 

  93. Song, Y. et al. Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nat. Commun. 7, 12934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rowland, A. T. & Keating, C. D. Formation and properties of liposome-stabilized all-aqueous emulsions based on PEG/dextran, PEG/Ficoll, and PEG/sulfate aqueous biphasic systems. Soft Matter 17, 3688–3699 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Sakuta, H. et al. Self-emergent protocells generated in an aqueous solution with binary macromolecules through liquid-liquid phase separation. ChemBioChem 21, 3323–3328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Biffi, S. et al. Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proc. Natl Acad. Sci. USA 110, 15633–15637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rovigatti, L., Smallenburg, F., Romano, F. & Sciortino, F. Gels of DNA nanostars never crystallize. ACS Nano 8, 3567–3574 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Bomboi, F. et al. Re-entrant DNA gels. Nat. Commun. 7, 13191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Agarwal, S., Osmanovic, D., Klocke, M. A. & Franco, E. The growth rate of DNA condensate droplets increases with the size of participating subunits. ACS Nano 16, 11842–11851 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Sato, Y., Sakamoto, T. & Takinoue, M. Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Sci. Adv. 6, eaba3471 (2020). The article offers deep insights into the design criteria, switching behaviour and multiphase structures of DNA nanostar-based all-DNA synthetic cells and organelles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brady, R. A., Brooks, N. J., Cicuta, P. & Di Michele, L. Crystallization of amphiphilic DNA C-stars. Nano Lett. 17, 3276–3281 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Nguyen, D. T., Jeon, B.-j, Abraham, G. R. & Saleh, O. A. Length-dependence and spatial structure of DNA partitioning into a DNA liquid. Langmuir 35, 14849–14854 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Saleh, O. A., Jeon, B.-j & Liedl, T. Enzymatic degradation of liquid droplets of DNA is modulated near the phase boundary. Proc. Natl Acad. Sci. USA 117, 16160–16166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jeon, B.-j, Nguyen, D. T. & Saleh, O. A. Sequence-controlled adhesion and microemulsification in a two-phase system of DNA liquid droplets. J. Phys. Chem. B 124, 8888–8895 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Park, N., Um, S. H., Funabashi, H., Xu, J. & Luo, D. A cell-free protein-producing gel. Nat. Mater. 8, 432–437 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Lee, T., Do, S., Lee, J. G., Kim, D.-N. & Shin, Y. The flexibility-based modulation of DNA nanostar phase separation. Nanoscale 13, 17638–17647 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Leathers, A. et al. Reaction–diffusion patterning of DNA-based artificial cells. J. Am. Chem. Soc. 144, 17468–17476 (2022). The article describes a system-level integration of layered functionalization of DNA nanostar-based synthetic cells with functional layers that allow to channel RNA information between different layers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Conrad, N., Chang, G., Fygenson, D. K. & Saleh, O. A. Emulsion imaging of a DNA nanostar condensate phase diagram reveals valence and electrostatic effects. J. Chem. Phys. 157, 234203 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Agarwal, S., Dizani, M., Osmanovic, D. & Franco, E. Light-controlled growth of DNA organelles in synthetic cells. Interface Focus 13, 20230017 (2023).

    Article  PubMed  Google Scholar 

  112. Masukawa, M. K., Okuda, Y. & Takinoue, M. Aqueous triple-phase system in microwell array for generating uniform-sized DNA hydrogel particles. Front. Genet. 12, 705022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Merindol, R., Delechiave, G., Heinen, L., Catalani, L. H. & Walther, A. Modular design of programmable mechanofluorescent DNA hydrogels. Nat. Commun. 10, 528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang, Y., Xu, W., Liu, G. & Tian, L. A pure DNA hydrogel with stable catalytic ability produced by one-step rolling circle amplification. Chem. Commun. 53, 3038–3041 (2017).

    Article  CAS  Google Scholar 

  115. Xu, W. et al. DNA hydrogel with tunable pH-responsive properties produced by rolling circle amplification. Chem. Eur. J. 23, 18276–18281 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, J., Kim, D. & Lee, J. B. DNA aptamer-based carrier for loading proteins and enhancing the enzymatic activity. RSC Adv. 7, 1643–1645 (2017).

    Article  CAS  Google Scholar 

  117. Deng, J. & Walther, A. Programmable ATP-fueled DNA coacervates by transient liquid-liquid phase separation. Chem 6, 3329–3343 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, W., Samanta, A., Deng, J., Akintayo, C. O. & Walther, A. Mechanistic insights into the phase separation behavior and pathway-directed information exchange in all-DNA droplets. Angew. Chem. Int. Ed. 61, e202208951 (2022).

    Article  CAS  Google Scholar 

  119. Ludwanowski, S., Samanta, A., Loescher, S., Barner-Kowollik, C. & Walther, A. A modular fluorescent probe for viscosity and polarity sensing in DNA hybrid mesostructures. Adv. Sci. 8, 2003740 (2021).

    Article  CAS  Google Scholar 

  120. Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018). A pioneering work describes the formation of all-DNA synthetic cells based on temperature-induced liquid–liquid phase separation, resulting in the formation of core–shell structures with a liquid and crowded ssDNA solution in a DNA hydrogel shell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Merindol, R., Martin, N., Beneyton, T., Baret, J.-C. & Ravaine, S. Fast and ample light controlled actuation of monodisperse all-DNA microgels. Adv. Funct. Mater. 31, 2010396 (2021).

    Article  CAS  Google Scholar 

  122. Franquelim, H. G., Khmelinskaia, A., Sobczak, J.-P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Grome, M. W., Zhang, Z., Pincet, F. & Lin, C. Vesicle tubulation with self-assembling DNA nanosprings. Angew. Chem. Int. Ed. 57, 5330–5334 (2018).

    Article  CAS  Google Scholar 

  124. Journot, C. M. A., Ramakrishna, V., Wallace, M. I. & Turberfield, A. J. Modifying membrane morphology and interactions with DNA origami clathrin-mimic networks. ACS Nano 13, 9973–9979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Franquelim, H. G., Dietz, H. & Schwille, P. Reversible membrane deformations by straight DNA origami filaments. Soft Matter 17, 276–287 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Diederichs, T. et al. Principles of small-molecule transport through synthetic nanopores. ACS Nano 15, 16194–16206 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Chidchob, P. et al. Spatial presentation of cholesterol units on a DNA cube as a determinant of membrane protein-mimicking functions. J. Am. Chem. Soc. 141, 1100–1108 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Göpfrich, K. et al. Ion channels made from a single membrane-spanning DNA duplex. Nano Lett. 16, 4665–4669 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Fragasso, A. et al. Reconstitution of ultrawide DNA origami pores in liposomes for transmembrane transport of macromolecules. ACS Nano 15, 12768–12779 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012). This pioneering work describes the insertion of a DNA origami nanopore into liposomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Diederichs, T. et al. Synthetic protein-conductive membrane nanopores built with DNA. Nat. Commun. 10, 5018 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xing, Y., Dorey, A., Jayasinghe, L. & Howorka, S. Highly shape- and size-tunable membrane nanopores made with DNA. Nat. Nanotechnol. 17, 708–713 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Cochereau, R., Maffeis, V., dos Santos, E. C., Lörtscher, E. & Palivan, C. G. Polymeric giant unilamellar vesicles with integrated DNA-origami nanopores: an efficient platform for tuning bioreaction dynamics through controlled molecular diffusion. Adv. Funct. Mater. 33, 2304782 (2023).

    Article  CAS  Google Scholar 

  134. Li, Y. et al. Leakless end-to-end transport of small molecules through micron-length DNA nanochannels. Sci. Adv. 8, eabq4834 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shi, X. et al. A DNA turbine powered by a transmembrane potential across a nanopore. Nat. Nanotechnol. 19, 338–344 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Iwabuchi, S., Kawamata, I., Murata, S. & Nomura, S.-I. M. A large, square-shaped, DNA origami nanopore with sealing function on a giant vesicle membrane. Chem. Commun. 57, 2990–2993 (2021).

    Article  CAS  Google Scholar 

  137. Lanphere, C., Arnott, P. M., Jones, S. F., Korlova, K. & Howorka, S. A biomimetic DNA-based membrane gate for protein-controlled transport of cytotoxic drugs. Angew. Chem. Int. Ed. 60, 1903–1908 (2021).

    Article  CAS  Google Scholar 

  138. Dey, S. et al. A reversibly gated protein-transporting membrane channel made of DNA. Nat. Commun. 13, 2271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, G. et al. DNA-based artificial signaling system mimicking the dimerization of receptors for signal transduction and amplification. Anal. Chem. 93, 13807–13814 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, H. et al. Controlled dimerization of artificial membrane receptors for transmembrane signal transduction. Chem. Sci. 12, 8224–8230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, H. et al. DNA-based artificial receptors as transmembrane signal transduction systems for protocellular communication. Angew. Chem. Int. Ed. 62, e202301559 (2023).

    Article  CAS  Google Scholar 

  142. Kanwa, N., Gavrilovic, S., Brüggenthies, G. A., Qutbuddin, Y. & Schwille, P. Inducing lipid domains in membranes by self-assembly of DNA origami. Adv. Mater. Interfaces 10, 2202500 (2023).

    Article  CAS  Google Scholar 

  143. Rubio-Sánchez, R., Mognetti, B. M., Cicuta, P. & Di Michele, L. DNA-origami line-actants control domain organization and fission in synthetic membranes. J. Am. Chem. Soc. 145, 11265–11275 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hernández-Ainsa, S. et al. Controlling the reversible assembly of liposomes through a multistimuli responsive anchored DNA. Nano Lett. 16, 4462–4466 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Jakobsen, U., Rosholm, K. R. & Vogel, S. Design, synthesis and membrane anchoring strength of lipidated polyaza crown ether DNA-conjugates (LiNAs) studied by DNA-controlled assembly of liposomes. Org. Biomol. Chem. 20, 9460–9468 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Stengel, G., Zahn, R. & Höök, F. DNA-induced programmable fusion of phospholipid vesicles. J. Am. Chem. Soc. 129, 9584–9585 (2007). This pioneering work describes DNA-mediated fusion of small liposomes using DNA zipper geometries located at the outer membrane side.

    Article  CAS  PubMed  Google Scholar 

  147. Chan, Y.-H. M., van Lengerich, B. & Boxer, S. G. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3, FA17–FA21 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, C., Yan, A., Wang, H., Su, Y. & Li, D. DNA-mediated membrane fusion and its biological applications: sensing, reaction control and drug delivery. Anal. Sens. 2, e202200024 (2022).

    CAS  Google Scholar 

  149. Li, Z. et al. Dynamic fusion of nucleic acid functionalized nano-/micro-cell-like containments: from basic concepts to applications. ACS Nano 17, 15308–15327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Peruzzi, J. A., Jacobs, M. L., Vu, T. Q., Wang, K. S. & Kamat, N. P. Barcoding biological reactions with DNA-functionalized vesicles. Angew. Chem. Int. Ed. 58, 18683–18690 (2019).

    Article  CAS  Google Scholar 

  151. Löffler, P. M. G. et al. A DNA-programmed liposome fusion cascade. Angew. Chem. Int. Ed. 56, 13228–13231 (2017).

    Article  Google Scholar 

  152. Jumeaux, C. et al. Detection of microRNA biomarkers via inhibition of DNA-mediated liposome fusion. Nanoscale Adv. 1, 532–536 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Jumeaux, C. et al. MicroRNA detection by DNA-mediated liposome fusion. ChemBioChem 19, 434–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Huang, F. et al. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem. Sci. 11, 5592–5600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang, F. et al. Three compartment liposome fusion: functional protocells for biocatalytic cascades and operation of dynamic DNA machineries. Adv. Funct. Mater. 33, 2302814 (2023).

    Article  CAS  Google Scholar 

  156. Xie, M. et al. DNA zipper mediated membrane fusion for rapid exosomal miRNA detection. Anal. Chem. 94, 13043–13051 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Lyu, Y. et al. Constructing smart protocells with built-in DNA computational core to eliminate exogenous challenge. J. Am. Chem. Soc. 140, 6912–6920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Agarwal, S., Klocke, M. A., Pungchai, P. E. & Franco, E. Dynamic self-assembly of compartmentalized DNA nanotubes. Nat. Commun. 12, 3557 (2021). This pioneering work discusses the build-up of DNA nanotube-based cytoskeletons in water-in-oil compartments and their autonomous operation using transcription-based regulatory circuits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jahnke, K., Huth, V., Mersdorf, U., Liu, N. & Göpfrich, K. Bottom-up assembly of synthetic cells with a DNA cytoskeleton. ACS Nano 16, 7233–7241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Burns, J. R. Introducing bacteria and synthetic biomolecules along engineered DNA fibers. Small 17, 2100136 (2021).

    Article  CAS  Google Scholar 

  161. Jahnke, K. et al. DNA origami signaling units transduce chemical and mechanical signals in synthetic cells. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202301176 (2023).

  162. Pacella, M. S. et al. Characterizing the length-dependence of DNA nanotube end-to-end joining rates. Mol. Syst. Des. Eng. 5, 544–558 (2020).

    Article  CAS  Google Scholar 

  163. Schaffter, S. W. et al. Reconfiguring DNA nanotube architectures via selective regulation of terminating structures. ACS Nano 14, 13451–13462 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Mohammed, A. M., Šulc, P., Zenk, J. & Schulman, R. Self-assembling DNA nanotubes to connect molecular landmarks. Nat. Nanotechnol. 12, 312–316 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Zhan, P., Jahnke, K., Liu, N. & Göpfrich, K. Functional DNA-based cytoskeletons for synthetic cells. Nat. Chem. 14, 958–963 (2022). The article describes a system-level integration to use DNA filament-based cytoskeletons as track for autonomous motion of cargo nanoparticles using DNA walker concepts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Baumann, K. N. et al. Coating and stabilization of liposomes by clathrin-inspired DNA self-assembly. ACS Nano 14, 2316–2323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Baumann, K. N. et al. DNA–liposome hybrid carriers for triggered cargo release. ACS Appl. Bio Mater. 5, 3713–3721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kurokawa, C. et al. DNA cytoskeleton for stabilizing artificial cells. Proc. Natl Acad. Sci. USA 114, 7228–7233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhao, Q.-H., Cao, F.-H., Luo, Z.-H., Huck, W. T. S. & Deng, N.-N. Photoswitchable molecular communication between programmable DNA-based artificial membraneless organelles. Angew. Chem. Int. Ed. 61, e202117500 (2022).

    Article  CAS  Google Scholar 

  170. Tran, M. P. et al. A DNA segregation module for synthetic cells. Small 19, e2202711 (2022).

    Article  PubMed  Google Scholar 

  171. Saleh, O. A., Wilken, S., Squires, T. M. & Liedl, T. Vacuole dynamics and popping-based motility in liquid droplets of DNA. Nat. Commun. 14, 3574 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Deng, N.-N. & Huck, W. T. S. Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew. Chem. Int. Ed. 56, 9736–9740 (2017).

    Article  CAS  Google Scholar 

  173. Long, M. S., Jones, C. D., Helfrich, M. R., Mangeney-Slavin, L. K. & Keating, C. D. Dynamic microcompartmentation in synthetic cells. Proc. Natl Acad. Sci. USA 102, 5920–5925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liu, W., Lupfer, C., Samanta, A., Sarkar, A. & Walther, A. Switchable hydrophobic pockets in DNA protocells enhance chemical conversion. J. Am. Chem. Soc. 145, 7090–7094 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Walczak, M. et al. Responsive core-shell DNA particles trigger lipid-membrane disruption and bacteria entrapment. Nat. Commun. 12, 4743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hunter, T. Signaling — 2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Alam, M. T. et al. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat. Commun. 8, 16018 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Berhanu, S., Ueda, T. & Kuruma, Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10, 1325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lee, K. Y. et al. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36, 530–535 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Adir, O. et al. Synthetic cells with self-activating optogenetic proteins communicate with natural cells. Nat. Commun. 13, 2328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lakin, M. R., Youssef, S., Polo, F., Emmott, S. & Phillips, A. Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Aubert, N., Mosca, C., Fujii, T., Hagiya, M. & Rondelez, Y. Computer-assisted design for scaling up systems based on DNA reaction networks. J. R. Soc. Interface 11, 20131167 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Banda, P. & Teuscher, C. COEL: a cloud-based reaction network simulator. Front. Robot. AI 3, https://doi.org/10.3389/frobt.2016.00013 (2016).

  187. Joesaar, A. et al. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369–378 (2019). This pioneering work establishes a sender–receiver communication with negative feedback between different populations of DNA-based synthetic cells using dynamic DNA strand displacement reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Huang, X., Patil, A. J., Li, M. & Mann, S. Design and construction of higher-order structure and function in proteinosome-based protocells. J. Am. Chem. Soc. 136, 9225–9234 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Yang, S. et al. Light-activated signaling in DNA-encoded sender–receiver architectures. ACS Nano 14, 15992–16002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sharma, C., Samanta, A., Schmidt, R. S. & Walther, A. DNA-based signaling networks for transient colloidal co-assemblies. J. Am. Chem. Soc. 145, 17819–17830 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Groeer, S., Schumann, K., Loescher, S. & Walther, A. Molecular communication relays for dynamic cross-regulation of self-sorting fibrillar self-assemblies. Sci. Adv. 7, eabj5827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Peng, R. et al. DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nat. Commun. 11, 978 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Baccouche, A., Montagne, K., Padirac, A., Fujii, T. & Rondelez, Y. Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 67, 234–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Genot, A. J. et al. High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem. 8, 760 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Fujii, T. & Rondelez, Y. Predator–prey molecular ecosystems. ACS Nano 7, 27–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Padirac, A., Fujii, T., Estévez-Torres, A. & Rondelez, Y. Spatial waves in synthetic biochemical networks. J. Am. Chem. Soc. 135, 14586–14592 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Dehne, H., Reitenbach, A. & Bausch, A. R. Reversible and spatiotemporal control of colloidal structure formation. Nat. Commun. 12, 6811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gines, G. et al. Microscopic agents programmed by DNA circuits. Nat. Nanotechnol. 12, 351–359 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Zambrano, A. et al. Programmable synthetic cell networks regulated by tuneable reaction rates. Nat. Commun. 13, 3885 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7, 465 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kim, J., Khetarpal, I., Sen, S. & Murray, R. M. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res. 42, 6078–6089 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Franco, E., Giordano, G., Forsberg, P.-O. & Murray, R. M. Negative autoregulation matches production and demand in synthetic transcriptional networks. ACS Synth. Biol. 3, 589–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Schaffter, S. W. & Schulman, R. Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nat. Chem. 11, 829–838 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-assembly. Nat. Chem. 11, 510–520 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem. 6, 295–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Yewdall, N. A., André, A. A. M., Lu, T. & Spruijt, E. Coacervates as models of membraneless organelles. Curr. Opin. Colloid Interface Sci. 52, 101416 (2021).

    Article  CAS  Google Scholar 

  209. Fulton, A. B. How crowded is the cytoplasm? Cell 30, 345–347 (1982).

    Article  CAS  PubMed  Google Scholar 

  210. Ghosh, B., Bose, R. & Tang, T. Y. D. Can coacervation unify disparate hypotheses in the origin of cellular life? Curr. Opin. Colloid Interface Sci. 52, 101415 (2021).

    Article  CAS  Google Scholar 

  211. Samanta, A., Sabatino, V., Ward, T. R. & Walther, A. Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nat. Nanotechnol. 15, 914–921 (2020). This pioneering work describes the use of genetically engineered artificial metalloenzymes in crowded all-DNA-based synthetic cells in which the catalysis led to growth of the synthetic cells, chemo-mechanical regulation, and fusion of synthetic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Samanta, A., Hörner, M., Liu, W., Weber, W. & Walther, A. Signal-processing and adaptive prototissue formation in metabolic DNA protocells. Nat. Commun. 13, 3968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhan, P. et al. Recent advances in DNA origami-engineered nanomaterials and applications. Chem. Rev. 123, 3976–4050 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, F., Lu, C.-H. & Willner, I. From cascaded catalytic nucleic acids to enzyme–DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Dong, Y. et al. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev. 120, 9420–9481 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Heinen, L. & Walther, A. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Sci. Adv. 5, eaaw0590 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Deng, J. & Walther, A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat. Commun. 12, 5132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Loescher, S., Groeer, S. & Walther, A. 3D DNA origami nanoparticles: from basic design principles to emerging applications in soft matter and (bio-)nanosciences. Angew. Chem. Int. Ed. Engl. 57, 10436–10448 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the Deutsche Forschungsgemeinschaft in WA 3084/19-1, and the Collaborative Research Center 1551 “Polymer Concepts in Cellular Function”. A.W. acknowledges funding via a Gutenberg Research Professorship underpinning his Life-Like Materials Program. A.S. acknowledges the support from IIT Roorkee for Faculty Initiation Grant (FIG-101023) and RSC Research Fund grant (R23-1045418311). A.S. and L.B.P. acknowledge personal grants by the Alexander von Humboldt Foundation. M.M. acknowledges funding through the European Union’s Horizon 2022 research and innovation programme under the Marie Skłodowska-Curie grant agreement DNAPC4ImunoMol-101111348.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and A.W. researched data for the article, contributed to the discussion of content, writing and reviewing/editing the manuscript before submission. L.B. and M.M. researched data for the article, contributed to discussion of content, and writing.

Corresponding authors

Correspondence to Avik Samanta or Andreas Walther.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks S. Howorka, C. Garcia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aptamers

Oligonucleotides that selectively bind a target ligand (for example, lysozyme, oncogenes, ATP and dopamine) and which are usually obtained by systematic in vitro selection procedures, commonly known as SELEX (Systematic Evolution of Ligands by EXponential enrichment).

Aqueous two-phase emulsion systems

(ATPS). Spontaneous phase separation of a mixture of two polymers, a polymer and a kosmotropic salt, or two salts (one chaotropic and one kosmotropic) in water, used for the efficient separation of biomolecules.

Bottom–up approach

An approach in which (bio)chemically synthesized components are assembled rather than extracted from biological entities to obtain a synthetic cell model.

Chemical reaction networks

A set of interconnected chemical reactions that can give rise to complex behaviour (for example, oscillations), signal processing and chemical computation.

Coacervates

Water-rich droplet phase formed by associative phase segregation of at least two interacting compounds or segregative phase separation of one compound.

DNA nanostructures

Stable nanoscopic structures made exclusively from DNA using base-pairing interactions and various other structural tools of DNA nanotechnology, such as Holliday junctions, blunt-end stacking and triplex formation.

DNA origami

Two-dimensional or three-dimensional, well-defined nanostructures assembled from a long circular ssDNA scaffold and a mixture of short ssDNA staples by duplex-mediated folding.

DNAzyme

Catalytically active DNA molecules that are often used to cleave the phosphodiester bond in a RNA target molecule in the presence of certain metal ion cofactors.

Dynamic strand displacement reaction

The dynamic strand displacement (DSD) reaction is the process by which an invader strand of longer complementarity hybridizes onto a double-stranded DNA (dsDNA) with incomplete hybridization, displacing the shorter of the previously hybridized strands. These reactions are driven by the length of the non-hybridized domains in the parent dsDNA, also known as toeholds. The result is a dsDNA with a higher thermodynamic stability, typically a longer dsDNA, and a released single-stranded DNA (ssDNA) previously bound in the dsDNA.

Hybridization chain reaction

(HCR). An isothermal enzyme-free polymerization technique in which two sets of DNA hairpin molecules undergo a chain reaction in the presence of an initiator molecule containing a complementary domain of the toehold sequence of one of the hairpins and the loop of the other.

Macromolecular crowding

Molecular crowding can occur in concentrated solutions of polymers and colloids to accelerate catalysis or induce self-assembly (for example, by depletion interactions) via nonspecific interactions.

Nanopores

Channels that enable the transport of ions, small molecules or large macromolecules (for example, proteins) through lipid bilayer membranes, usually consisting of proteins or self-assembled macromolecules, such as DNA.

Synthetic cells

Engineered microcompartments that aim to mimic aspects of the architecture, functions or behaviours of living cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, A., Baranda Pellejero, L., Masukawa, M. et al. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 8, 454–470 (2024). https://doi.org/10.1038/s41570-024-00606-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00606-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing