Abstract
Flat-band materials such as the kagome metals or moiré superlattices are of intense current interest. Flat bands can result from the electron motion on numerous (special) lattices and usually exhibit topological properties. Their reduced bandwidth proportionally enhances the effect of Coulomb interaction, even when the absolute magnitude of the latter is relatively small. Seemingly unrelated to these materials is the large family of strongly correlated electron systems, which include the heavy-fermion compounds, and cuprate and pnictide superconductors. In addition to itinerant electrons from large, strongly overlapping orbitals, they frequently contain electrons from more localized orbitals, which are subject to a large Coulomb interaction. The question then arises as to what commonality in the physical properties and microscopic physics, if any, exists between these two broad categories of materials. A rapidly increasing body of strikingly similar phenomena across the different platforms — from electronic localization–delocalization transitions to strange-metal behaviour and unconventional superconductivity — suggests that similar underlying principles could be at play. Indeed, it has recently been suggested that flat-band physics can be understood in terms of Kondo physics. Inversely, the concept of electronic topology from lattice symmetry, which is fundamental in flat-band systems, is enriching the field of strongly correlated electron systems, in which correlation-driven topological phases are increasingly being investigated. In this Perspective article, we elucidate this connection, survey the new opportunities for cross-fertilization across platforms and assess the prospect for new insights that may be gained into correlation physics and its intersection with electronic topology.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298 (2017).
Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).
Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021).
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Pirie, H. et al. Imaging emergent heavy Dirac fermions of a topological Kondo insulator. Nat. Phys. 16, 52 (2020).
Lee, S. et al. Perfect Andreev reflection due to the Klein paradox in a topological superconducting state. Nature 570, 344–348 (2019).
Dzsaber, S. et al. Kondo insulator to semimetal transformation tuned by spin–orbit coupling. Phys. Rev. Lett. 118, 246601 (2017).
Lai, H.-H., Grefe, S. E., Paschen, S. & Si, Q. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl Acad. Sci. USA 115, 93 (2018).
Dzsaber, S. et al. Giant spontaneous Hall effect in a nonmagnetic Weyl–Kondo semimetal. Proc. Natl Acad. Sci. USA 118, e2013386118 (2021).
Kirchner, S. et al. Colloquium: heavy-electron quantum criticality and single-particle spectroscopy. Rev. Mod. Phys. 92, 011002 (2020).
Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).
Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).
Mott, N. F. & Peierls, R. Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49, 72 (1937).
von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).
von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).
von Klitzing, K. et al. 40 years of the quantum Hall effect. Nat. Rev. Phys. 2, 397–401 (2020).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Stormer, H. L. Nobel lecture: the fractional quantum Hall effect. Rev. Mod. Phys. 71, 875 (1999).
Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).
Mielke, A. Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A Math. Theor. 24, L73–L77 (1991).
Sutherland, B. Localization of electronic wave functions due to local topology. Phys. Rev. B 34, 5208–5211 (1986).
Ogata, T., Kawamura, M. & Ozaki, T. Methods for constructing parameter-dependent flat-band lattices. Phys. Rev. B 103, 205119 (2021).
Calugaru, D. et al. General construction and topological classification of crystalline flat bands. Nat. Phys. 18, 185–189 (2022).
Neves, P. M. et al. Crystal net catalog of model flat band materials. Preprint at https://arXiv.org/abs/2303.02524 (2023).
Regnault, N. et al. Catalogue of flat-band stoichiometric materials. Nature 603, 824–828 (2022).
Chiu, C. S., Carroll, A. N., Regnault, N. & Houck, A. A. Line-graph-lattice crystal structures of stoichiometric materials. Phys. Rev. Res. 4, 023063 (2022).
Andrei, E. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233 (2011).
Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Forsythe, C. et al. Band structure engineering of 2D materials using patterned dielectric superlattices. Nat. Nano. 13, 566–571 (2018).
Ghorashi, S. A. A. et al. Topological and stacked flat bands in bilayer graphene with a superlattice potential. Phys. Rev. Lett. 130, 196201 (2023).
Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X 3, 1473052 (2018).
Morvan, A. et al. Formation of robust bound states of interacting microwave photons. Nature 612, 240–245 (2022).
Helbig, T. et al. Band structure engineering and reconstruction in electric circuit networks. Phys. Rev. B 99, 161114 (2019).
Onimaru, T. et al. Quadrupole-driven non-Fermi-liquid and magnetic-field-induced heavy fermion states in a non-Kramers doublet system. Phys. Rev. B 94, 075134 (2016).
Martelli, V. et al. Sequential localization of a complex electron fluid. Proc. Natl Acad. Sci. USA 116, 17701 (2019).
Liu, C.-C., Paschen, S. & Si, Q. Quantum criticality enabled by intertwined degrees of freedom. Proc. Natl Acad. Sci. USA 120, e2300903120 (2023).
Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, 1997).
Coleman, P. Introduction to Many-Body Physics (Cambridge Univ. Press, 2015).
Trovarelli, O. et al. YbRh2Si2: pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000).
Nguyen, D. H. et al. Superconductivity in an extreme strange metal. Nat. Commun. 12, 4341 (2021).
Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755 (1984).
Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 (1986).
Jacko, A. C., Fjaerestad, J. O. & Powell, B. J. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nat. Phys. 5, 422 (2009).
Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249 (2016).
Chen, L. et al. Topological semimetal driven by strong correlations and crystalline symmetry. Nat. Phys. 18, 1341–1346 (2022).
Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189 (1986).
Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759 (1988).
Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624 (2019).
Can, O. et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat. Phys. 17, 519–524 (2021).
Volkov, P. A., Wilson, J. H., Lucht, K. P. & Pixley, J. H. Magic angles and correlations in twisted nodal superconductors. Phys. Rev. B 107, 174506 (2023).
Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).
Si, Q. & Hussey, N. E. Iron-based superconductors: teenage, complex, challenging. Phys. Today 76, 34–40 (2023).
Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).
Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).
Yu, R., Hu, H., Nica, E. M., Zhu, J.-X. & Si, Q. Orbital selectivity in electron correlations and superconducting pairing of iron-based superconductors. Front. Phys. 9, 578347 (2021).
Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010).
Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182 (2018).
Urano, C. et al. LiV2O4 spinel as a heavy-mass Fermi liquid: anomalous transport and role of geometrical frustration. Phys. Rev. Lett. 85, 1052–1055 (2000).
Miyoshi, K., Morikuni, E., Fujiwara, K., Takeuchi, J. & Hamasaki, T. Mass-enhanced Fermi-liquid ground state in Na1.5Co2O4. Phys. Rev. B 69, 132412 (2004).
Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804 (2013).
Wakamatsu, K. et al. Thermoelectric signature of quantum critical phase in a doped spin-liquid candidate. Nat. Commun. 14, 3679 (2023).
Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).
Vaño, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).
Liu, M. et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator. Sci. Adv. 7, eabi6339 (2021).
Moriya, T. Recent progress in the theory of itinerant electron magnetism. J. Magn. Magn. Mater. 14, 1–46 (1979).
Vonsovskii, S. V., Katsnel’son, M. I. & Trefilov, A. V. in The Physics of Metals and Metallography Vol. 76 (Interperiodica, 1993).
Hausoel, A. et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions. Nat. Commun. 8, 16062 (2017).
Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Li, X., Kono, J., Si, Q. & Paschen, S. Is the optical conductivity of heavy fermion strange metals Planckian? Front. Electron. Mater. 2, 934691 (2023).
Qazilbash, M. M. et al. Electronic correlations in the iron pnictides. Nat. Phys. 5, 647–650 (2009).
Si, Q. Electrons on the verge. Nat. Phys. 5, 629–630 (2009).
Degiorgi, L. Electronic correlations in iron-pnictide superconductors and beyond: lessons learned from optics. New J. Phys. 13, 023011 (2011).
Schoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179 (2015).
Taupin, M. & Paschen, S. Are heavy fermion strange metals Planckian? Crystals 12, 251 (2022).
Cava, R. J., van Dover, R. B., Batlogg, B. & Rietman, E. A. Bulk superconductivity at 36 K in La1.8Sr0.2CuO4. Phys. Rev. Lett. 58, 408–410 (1987).
Cava, R. J. et al. Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9−δ. Phys. Rev. Lett. 58, 1676–1679 (1987).
Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2−xSrxCuO4. Science 323, 603–607 (2009).
Ye, L. et al. Hopping frustration-induced flat band and strange metallicity in a kagome metal. Nat. Phys. https://doi.org/10.1038/s41567-023-02360-5 (2024).
Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).
Si, Q., Rabello, S., Ingersent, K. & Smith, J. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804 (2001).
Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).
Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).
Patel, A. A. & Sachdev, S. Theory of a Planckian metal. Phys. Rev. Lett. 123, 066601 (2019).
Guo, H., Gu, Y. & Sachdev, S. Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode. Ann. Phys. 418, 168202 (2020).
Christos, M., Joshi, D. G., Sachdev, S. & Tikhanovskaya, M. Critical metallic phase in the overdoped random t–J model. Proc. Natl Acad. Sci. USA 119, e2206921119 (2022).
Else, D. V. & Senthil, T. Strange metals as ersatz Fermi liquids. Phys. Rev. Lett. 127, 086601 (2021).
Gegenwart, P. et al. Unconventional quantum criticality in YbRh2Si2. Physica B Condens. Matter 403, 1184–1188 (2008).
Tanatar, M. A. et al. Anisotropic violation of the Wiedemann–Franz law at a quantum critical point. Science 316, 1320 (2007).
Oshikawa, M. Topological approach to Luttinger’s theorem and Fermi surface of a Kondo lattice. Phys. Rev. Lett. 84, 3370–3373 (2000).
Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881 (2004).
Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl Acad. Sci. USA 107, 14547 (2010).
Maksimovic, N. et al. Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5. Science 375, 76–81 (2022).
Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).
Fang, Y. et al. Fermi surface transformation at the pseudogap critical point of a cuprate superconductor. Nat. Phys. 18, 558–564 (2022).
Huang, J. et al. Correlation-driven electronic reconstruction in FeTe1−xSex. Commun. Phys. 5, 29 (2022).
Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).
Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5−xPdx (x = 1, 1.5). Phys. Rev. Lett. 75, 725–728 (1995).
Fuhrman, W. T. et al. Pristine quantum criticality in a Kondo semimetal. Sci. Adv. 7, eabf9134 (2021).
Prochaska, L. et al. Singular charge fluctuations at a magnetic quantum critical point. Science 367, 285 (2020).
Matsumoto, Y. et al. Quantum criticality without tuning in the mixed valence compound β-YbAlB4. Science 331, 316 (2011).
Kobayashi, H. et al. Observation of a critical charge mode in a strange metal. Science 379, 908–912 (2023).
Michon, B. et al. Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat. Nat. Commun. 14, 3033 (2023).
Valla, T. et al. Temperature dependent scattering rates at the Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 85, 828–831 (2000).
Ekahana, S. A. et al. Anomalous quasiparticles in the zone center electron pocket of the kagomé ferromagnet Fe3Sn2. Preprint at https://arXiv.org/abs/2206.13750 (2022).
Hu, H. et al. Unconventional superconductivity from Fermi surface fluctuations in strongly correlated metals. Preprint at https://arXiv.org/abs/2109.13224 (2021).
Chen, L. et al. Shot noise in a strange metal. Science 382, 907–911 (2023).
Bakali, E. et al. A Knudsen cell approach for the molecular beam epitaxy of the heavy fermion compound YbRh2Si2. J. Cryst. Growth 595, 126804 (2022).
Beenakker, C. W. J. & Büttiker, M. Suppression of shot noise in metallic diffusive conductors. Phys. Rev. B 46, 1889–1892 (1992).
Wang, Y. et al. Shot noise as a characterization of strongly correlated metals. Preprint at https://arXiv.org/abs/2211.11735 (2022).
Nikolaenko, A., Sachdev, S. & Patel, A. A. Theory of shot noise in strange metals. Phys. Rev. Res. 5, 043143 (2023).
Zhou, Y., Jin, K.-H., Huang, H., Wang, Z. & Liu, F. Weyl points created by a three-dimensional flat band. Phys. Rev. B 99, 201105 (2019).
Wu, F., Zhang, R.-X. & Sarma, S. D. Three-dimensional topological twistronics. Phys. Rev. Res. 2, 022010 (2020).
Volkov, B. A. & Pankratov, O. Two-dimensional massless electrons in an inverted contact. JETP Lett. 42, 178 (1985).
Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).
Hastings, M. B. Dirac structure, RVB, and Goldstone modes in the kagomé antiferromagnet. Phys. Rev. B 63, 014413 (2000).
Kondo, S. et al. LiV2O4: a heavy fermion transition metal oxide. Phys. Rev. Lett. 78, 3729–3732 (1997).
Huang, J. et al. Three-dimensional flat bands and Dirac cones in a pyrochlore superconductor. Preprint at https://arXiv.org/abs/2304.09066 (2023).
Wakefield, J. P. et al. Three-dimensional flat bands in pyrochlore metal CaNi2. Nature 623, 301–306 (2023).
Guo, H.-M. & Franz, M. Three-dimensional topological insulators on the pyrochlore lattice. Phys. Rev. Lett. 103, 206805 (2009).
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
Dzsaber, S. et al. Control of electronic topology in a strongly correlated electron system. Nat. Commun. 13, 5729 (2022).
Kushwaha, S. K. et al. Magnetic field-tuned Fermi liquid in a Kondo insulator. Nat. Commun. 10, 5487 (2019).
Tomczak, J. M. Isoelectronic tuning of heavy fermion systems: proposal to synthesize Ce3Sb4Pd3. Phys. Rev. B 101, 035116 (2020).
Hu, H. et al. Topological semimetals without quasiparticles. Preprint at https://arXiv.org/abs/2110.06182 (2021).
Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).
Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).
Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).
Chakraborty, T. et al. Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr2FeMoO6. Phys. Rev. B 106, 155141 (2022).
Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).
Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).
Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).
Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).
Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
Lu, Z. et al. Fractional quantum anomalous Hall effect in a graphene moiré superlattice. Preprint at https://arxiv.org/abs/2309.17436 (2023).
Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684 (2019).
Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523 (2020).
Aoki, D. et al. Unconventional superconductivity in UTe2. J. Phys. Condens. Matter 34, 243002 (2022).
Khim, S. et al. Field-induced transition within the superconducting state of CeRh2As2. Science 373, 1012–1016 (2021).
Yin, J.-X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).
Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).
Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).
Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).
Crépel, V., Guerci, D., Cano, J., Pixley, J. H. & Millis, A. Topological superconductivity in doped magnetic moiré semiconductors. Phys. Rev. Lett. 131, 056001 (2023).
Lin, Y.-P. Chiral flat band superconductivity from symmetry-protected three-band crossings. Phys. Rev. Res. 2, 043209 (2020).
Jiang, K. et al. Kagome superconductors AV3Sb5 (A= K, Rb, Cs). Natl Sci. Rev. 10, nwac199 (2023).
Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2020).
Nayak, A. K. et al. Evidence of topological boundary modes with topological nodal-point superconductivity. Nat. Phys. 17, 1413–1419 (2021).
Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).
Herzog-Arbeitman, J., Peri, V., Schindler, F., Huber, S. D. & Bernevig, B. A. Superfluid weight bounds from symmetry and quantum geometry in flat bands. Phys. Rev. Lett. 128, 087002 (2022).
Wolgast, S. et al. Low-temperature surface conduction in the Kondo insulator SmB6. Phys. Rev. B 88, 180405 (2013).
Eo, Y. S., Sun, K., Kurdak, C., Kim, D.-J. & Fisk, Z. Inverted resistance measurements as a method for characterizing the bulk and surface conductivities of three-dimensional topological insulators. Phys. Rev. Appl. 9, 044006 (2018).
Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014).
Ohtsubo, Y. et al. Non-trivial surface states of samarium hexaboride at the (111) surface. Nat. Commun. 10, 2298 (2019).
Legner, M., Rüegg, A. & Sigrist, M. Surface-state spin textures and mirror Chern numbers in topological Kondo insulators. Phys. Rev. Lett. 115, 156405 (2015).
Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287 (2015).
Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 096604 (2017).
Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).
Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).
Pirie, H. et al. Visualizing the atomic-scale origin of metallic behavior in Kondo insulators. Science 379, 1214–1218 (2023).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Caroli, C., De Gennes, P. G. & Matricon, J. Bound Fermion states on a vortex line in a type II superconductor. Phys. Lett. 9, 307–309 (1964).
Zhao, S. Y. F. et al. Emergent interfacial superconductivity between twisted cuprate superconductors. Preprint at https://arxiv.org/abs/2108.13455 (2021).
Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital degree of freedom in iron-based superconductors. NPJ Quantum Mater. 2, 57 (2017).
Yu, R. & Si, Q. Orbital-selective Mott phase in multiorbital models for alkaline iron selenides K1−xFe2−ySe2. Phys. Rev. Lett. 110, 146402 (2013).
Yu, R. & Si, Q. Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides. Phys. Rev. B 96, 125110 (2017).
Anisimov, V., Nekrasov, I., Kondakov, D., Rice, T. & Sigrist, M. Orbital-selective Mott-insulator transition in Ca2−xSrxRuO4. Eur. Phys. J. B 25, 191–201 (2002).
Komijani, Y. & Kotliar, G. Analytical slave-spin mean-field approach to orbital selective Mott insulators. Phys. Rev. B 96, 125111 (2017).
Dai, J., Si, Q., Zhu, J.-X. & Abrahams, E. Iron pnictides as a new setting for quantum criticality. Proc. Natl Acad. Sci. USA 106, 4118 (2009).
Shibauchi, T., Carrington, A. & Matsuda, Y. A quantum critical point lying beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014).
Senthil, T. Critical Fermi surfaces and non-Fermi liquid metals. Phys. Rev. B 78, 035103 (2008).
Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).
Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).
Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653 (2019).
Shaginyan, V. R. et al. Fermion condensation, T-linear resistivity, and Planckian limit. JETP Lett. 110, 290–295 (2019).
Choi, Y. et al. Tracing out correlated Chern insulators in magic angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2008.11746 (2020).
Lu, X. et al. Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proc. Natl Acad. Sci. USA 118, e2100006118 (2021).
Kang, J. & Vafek, O. Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018).
Bultinck, N. et al. Ground state and hidden symmetry of magic-angle graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).
Bernevig, B. A., Song, Z.-D., Regnault, N. & Lian, B. Twisted bilayer graphene. III. Interacting Hamiltonian and exact symmetries. Phys. Rev. B 103, 205413 (2021).
Xie, M. & MacDonald, A. H. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).
Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).
Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174 (2019).
Kang, J. & Vafek, O. Strong coupling phases of partially filled twisted bilayer graphene narrow bands. Phys. Rev. Lett. 122, 246401 (2019).
Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).
Vafek, O. & Kang, J. Lattice model for the Coulomb interacting chiral limit of magic-angle twisted bilayer graphene: symmetries, obstructions, and excitations. Phys. Rev. B 104, 075143 (2021).
Zou, L., Po, H. C., Vishwanath, A. & Senthil, T. Band structure of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions. Phys. Rev. B 98, 085435 (2018).
Zhang, X., Pan, G., Zhang, Y., Kang, J. & Meng, Z. Y. Momentum space quantum Monte Carlo on twisted bilayer graphene. Chin. Phys. Lett. 38, 077305 (2021).
Cea, T. & Guinea, F. Band structure and insulating states driven by Coulomb interaction in twisted bilayer graphene. Phys. Rev. B 102, 045107 (2020).
Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).
Song, Z.-D., Lian, B., Regnault, N. & Bernevig, B. A. Twisted bilayer graphene. II. Stable symmetry anomaly. Phys. Rev. B 103, 205412 (2021).
Shi, H. & Dai, X. Heavy-fermion representation for twisted bilayer graphene systems. Phys. Rev. B 106, 245129 (2022).
Hu, H. et al. Symmetric Kondo lattice states in doped strained twisted bilayer graphene. Phys. Rev. Lett. 131, 166501 (2023).
Zhou, G.-D. & Song, Z.-D. Kondo phase in twisted bilayer graphene — a unified theory for distinct experiments. Preprint at https://arxiv.org/abs/2301.04661 (2023).
Huang, C. et al. Evolution from quantum anomalous Hall insulator to heavy-fermion semimetal in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2304.14064 (2023).
Chou, Y.-Z. & Das Sarma, S. Kondo lattice model in magic-angle twisted bilayer graphene. Phys. Rev. Lett. 131, 026501 (2023).
Hu, H., Bernevig, B. A. & Tsvelik, A. M. Kondo lattice model of magic-angle twisted-bilayer graphene: Hund’s rule, local-moment fluctuations, and low-energy effective theory. Phys. Rev. Lett. 131, 026502 (2023).
Lau, L. L. H. & Coleman, P. Topological mixed valence model for twisted bilayer graphene. Preprint at https://arxiv.org/abs/2303.02670 (2023).
Datta, A., Calderón, M. J., Camjayi, A. & Bascones, E. Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene. Nat. Commun. 14, 5036 (2023).
Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).
Huang, J. et al. Non-Fermi liquid behaviour in a correlated flat-band pyrochlore lattice. Nat. Phys. https://doi.org/10.1038/s41567-023-02362-3 (2024).
Bergman, D. L., Wu, C. & Balents, L. Band touching from real-space topology in frustrated hopping models. Phys. Rev. B 78, 125104 (2008).
Chen, L. et al. Metallic quantum criticality enabled by flat bands in a kagome lattice. Preprint at https://arxiv.org/abs/2307.09431 (2023).
Chen, L. et al. Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations. Preprint at https://arxiv.org/abs/2212.08017 (2022).
Hu, H. & Si, Q. Coupled topological flat and wide bands: quasiparticle formation and destruction. Sci. Adv. 9, eadg0028 (2023).
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).
Wagner, C., Chowdhury, T., Pixley, J. H. & Ingersent, K. Long-range entanglement near a Kondo-destruction quantum critical point. Phys. Rev. Lett. 121, 147602 (2018).
Hauke, P., Heyl, M., Tagliacozzo, L. & Zoller, P. Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12, 778–782 (2016).
Barišić, N. et al. Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. Proc. Natl Acad. Sci. USA 110, 12235 (2013).
Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142 (2019).
Shishido, H. et al. Evolution of the Fermi surface of BaFe2(As1−xPx)2 on entering the superconducting dome. Phys. Rev. Lett. 104, 057008 (2010).
Zhong, S. et al. Origin of magnetoresistance suppression in thin γ-MoTe2. Phys. Rev. B 97, 241409 (2018).
Kirschbaum, D. M., Lužnik, M., Roy, G. L. & Paschen, S. How to identify and characterize strongly correlated topological semimetals. J. Phys. Mater. 7, 012003 (2024).
Haubold, E. et al. Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe4. Phys. Rev. B 95, 241108 (2017).
Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett. 80, 5623–5626 (1998).
Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).
Acknowledgements
The authors thank J. Analytis, D. Calugaru, J. Cano, L. Chen, R. Comin, L. Crippa, P. Dai, X. Dai, L. Deng, D. Efetov, S. Fang, S. Grefe, P. Guinea, T. Hazra, J. Hertzog Arbeitman, J. Hoffman, H. Hu, J. Huang, K. Ingersent, O. Jansen, P. Jarillo-Herrero, A. Kandala, S. Kirchner, D. Kirschbaum, L. Lau, G. Le Roy, X. Li, G. Lonzarich, M. Lužnik, V. Madhavan, M. Mahankali, D. Natelson, J. P. Paglione, A. Panigrahi, J. Pixley, G. Rai, N. Regnault, G. Sangiovanni, S. Sebastian, T. Senthil, C. Setty, Z. Song, F. Steglich, S. Sur, M. Taupin, A. Tsvelik, O. Vafek, R. Valenti, M. Vergniory, Y. Wang, T. Wehling, F. Xie, B. J. Yang, L. Ye, M. Yi, J. Yu, R. Yu and Z. Zhuang for collaborations and discussions, which were in part conducted at the Kavli Institute for Theoretical Physics at UC Santa Barbara, where support was provided by the US National Science Foundation (NSF) under Grant No. NSF PHY-1748958, and at the Aspen Center for Physics, which is supported by NSF Grant No. PHY-2210452. J.G.C. was supported by the Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF9070). The work of B.A.B. was primarily supported by the US Department of Energy (DOE) Grant No. DE-SC0016239 and the Betty Moore Foundation’s EPiQS Initiative (Grant No. GBMF11070). Q.S. is primarily supported by the US DOE, BES, under Award No. DE-SC0018197, by the Robert A. Welch Foundation Grant No. C-1411 and by the Vannevar Bush Faculty Fellowship ONR-VB N00014-23-1-2870. P.C. was supported by NSF grant DMR-1830707. S.P. acknowledges funding from the Austrian Science Fund (I5868-FOR 5249 QUAST, F86-SFB Q-M&S), the European Union’s Horizon 2020 Research and Innovation Programme (824109, EMP) and the European Research Council (ERC Advanced Grant 101055088, CorMeTop).
Author information
Authors and Affiliations
Contributions
J.G.C. and S.P. researched data for the article. All authors contributed to the discussion of the content and the writing and editing of the article before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Checkelsky, J.G., Bernevig, B.A., Coleman, P. et al. Flat bands, strange metals and the Kondo effect. Nat Rev Mater 9, 509–526 (2024). https://doi.org/10.1038/s41578-023-00644-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-023-00644-z
This article is cited by
-
Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal
Nature Communications (2024)
-
Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations
Nature Communications (2024)