Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Flat bands, strange metals and the Kondo effect

Abstract

Flat-band materials such as the kagome metals or moiré superlattices are of intense current interest. Flat bands can result from the electron motion on numerous (special) lattices and usually exhibit topological properties. Their reduced bandwidth proportionally enhances the effect of Coulomb interaction, even when the absolute magnitude of the latter is relatively small. Seemingly unrelated to these materials is the large family of strongly correlated electron systems, which include the heavy-fermion compounds, and cuprate and pnictide superconductors. In addition to itinerant electrons from large, strongly overlapping orbitals, they frequently contain electrons from more localized orbitals, which are subject to a large Coulomb interaction. The question then arises as to what commonality in the physical properties and microscopic physics, if any, exists between these two broad categories of materials. A rapidly increasing body of strikingly similar phenomena across the different platforms — from electronic localization–delocalization transitions to strange-metal behaviour and unconventional superconductivity — suggests that similar underlying principles could be at play. Indeed, it has recently been suggested that flat-band physics can be understood in terms of Kondo physics. Inversely, the concept of electronic topology from lattice symmetry, which is fundamental in flat-band systems, is enriching the field of strongly correlated electron systems, in which correlation-driven topological phases are increasingly being investigated. In this Perspective article, we elucidate this connection, survey the new opportunities for cross-fertilization across platforms and assess the prospect for new insights that may be gained into correlation physics and its intersection with electronic topology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Platforms for topology and correlation phenomena.
Fig. 2: Experimental measures of correlation strength across materials platforms.
Fig. 3: Strange-metal phenomena in the extreme correlation regime.
Fig. 4: Strange-metal phenomena in the extreme correlation regime: shot-noise suppression.
Fig. 5: Flavours of topology in correlated systems.
Fig. 6: Signatures of correlated topology in insulators, semimetals and superconductors.
Fig. 7: Heavy-fermion physics as a unifying view?

Similar content being viewed by others

References

  1. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298 (2017).

    CAS  PubMed  Google Scholar 

  2. Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021).

    CAS  Google Scholar 

  5. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    CAS  PubMed  Google Scholar 

  6. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    CAS  PubMed  Google Scholar 

  7. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    CAS  PubMed  Google Scholar 

  8. Pirie, H. et al. Imaging emergent heavy Dirac fermions of a topological Kondo insulator. Nat. Phys. 16, 52 (2020).

    CAS  Google Scholar 

  9. Lee, S. et al. Perfect Andreev reflection due to the Klein paradox in a topological superconducting state. Nature 570, 344–348 (2019).

    CAS  PubMed  Google Scholar 

  10. Dzsaber, S. et al. Kondo insulator to semimetal transformation tuned by spin–orbit coupling. Phys. Rev. Lett. 118, 246601 (2017).

    CAS  PubMed  Google Scholar 

  11. Lai, H.-H., Grefe, S. E., Paschen, S. & Si, Q. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl Acad. Sci. USA 115, 93 (2018).

    CAS  PubMed  Google Scholar 

  12. Dzsaber, S. et al. Giant spontaneous Hall effect in a nonmagnetic Weyl–Kondo semimetal. Proc. Natl Acad. Sci. USA 118, e2013386118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kirchner, S. et al. Colloquium: heavy-electron quantum criticality and single-particle spectroscopy. Rev. Mod. Phys. 92, 011002 (2020).

    CAS  Google Scholar 

  14. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Google Scholar 

  15. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    CAS  Google Scholar 

  16. Mott, N. F. & Peierls, R. Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49, 72 (1937).

    Google Scholar 

  17. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).

    Google Scholar 

  18. von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).

    Google Scholar 

  19. von Klitzing, K. et al. 40 years of the quantum Hall effect. Nat. Rev. Phys. 2, 397–401 (2020).

    Google Scholar 

  20. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  PubMed  Google Scholar 

  21. Stormer, H. L. Nobel lecture: the fractional quantum Hall effect. Rev. Mod. Phys. 71, 875 (1999).

    CAS  Google Scholar 

  22. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    CAS  PubMed  Google Scholar 

  23. Mielke, A. Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A Math. Theor. 24, L73–L77 (1991).

    Google Scholar 

  24. Sutherland, B. Localization of electronic wave functions due to local topology. Phys. Rev. B 34, 5208–5211 (1986).

    CAS  Google Scholar 

  25. Ogata, T., Kawamura, M. & Ozaki, T. Methods for constructing parameter-dependent flat-band lattices. Phys. Rev. B 103, 205119 (2021).

    CAS  Google Scholar 

  26. Calugaru, D. et al. General construction and topological classification of crystalline flat bands. Nat. Phys. 18, 185–189 (2022).

    CAS  Google Scholar 

  27. Neves, P. M. et al. Crystal net catalog of model flat band materials. Preprint at https://arXiv.org/abs/2303.02524 (2023).

  28. Regnault, N. et al. Catalogue of flat-band stoichiometric materials. Nature 603, 824–828 (2022).

    CAS  PubMed  Google Scholar 

  29. Chiu, C. S., Carroll, A. N., Regnault, N. & Houck, A. A. Line-graph-lattice crystal structures of stoichiometric materials. Phys. Rev. Res. 4, 023063 (2022).

    CAS  Google Scholar 

  30. Andrei, E. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    CAS  Google Scholar 

  31. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  PubMed  Google Scholar 

  32. Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Google Scholar 

  33. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    CAS  PubMed  Google Scholar 

  35. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  PubMed  Google Scholar 

  36. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  PubMed  Google Scholar 

  37. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS  PubMed  Google Scholar 

  38. Forsythe, C. et al. Band structure engineering of 2D materials using patterned dielectric superlattices. Nat. Nano. 13, 566–571 (2018).

    CAS  Google Scholar 

  39. Ghorashi, S. A. A. et al. Topological and stacked flat bands in bilayer graphene with a superlattice potential. Phys. Rev. Lett. 130, 196201 (2023).

    CAS  PubMed  Google Scholar 

  40. Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X 3, 1473052 (2018).

    Google Scholar 

  41. Morvan, A. et al. Formation of robust bound states of interacting microwave photons. Nature 612, 240–245 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Helbig, T. et al. Band structure engineering and reconstruction in electric circuit networks. Phys. Rev. B 99, 161114 (2019).

    CAS  Google Scholar 

  43. Onimaru, T. et al. Quadrupole-driven non-Fermi-liquid and magnetic-field-induced heavy fermion states in a non-Kramers doublet system. Phys. Rev. B 94, 075134 (2016).

    Google Scholar 

  44. Martelli, V. et al. Sequential localization of a complex electron fluid. Proc. Natl Acad. Sci. USA 116, 17701 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, C.-C., Paschen, S. & Si, Q. Quantum criticality enabled by intertwined degrees of freedom. Proc. Natl Acad. Sci. USA 120, e2300903120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, 1997).

  47. Coleman, P. Introduction to Many-Body Physics (Cambridge Univ. Press, 2015).

  48. Trovarelli, O. et al. YbRh2Si2: pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000).

    CAS  PubMed  Google Scholar 

  49. Nguyen, D. H. et al. Superconductivity in an extreme strange metal. Nat. Commun. 12, 4341 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755 (1984).

    CAS  Google Scholar 

  51. Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 (1986).

    CAS  Google Scholar 

  52. Jacko, A. C., Fjaerestad, J. O. & Powell, B. J. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nat. Phys. 5, 422 (2009).

    CAS  Google Scholar 

  53. Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249 (2016).

    CAS  Google Scholar 

  54. Chen, L. et al. Topological semimetal driven by strong correlations and crystalline symmetry. Nat. Phys. 18, 1341–1346 (2022).

    CAS  Google Scholar 

  55. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189 (1986).

    CAS  Google Scholar 

  56. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759 (1988).

    CAS  Google Scholar 

  57. Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

    CAS  Google Scholar 

  58. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624 (2019).

    CAS  PubMed  Google Scholar 

  59. Can, O. et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat. Phys. 17, 519–524 (2021).

    CAS  Google Scholar 

  60. Volkov, P. A., Wilson, J. H., Lucht, K. P. & Pixley, J. H. Magic angles and correlations in twisted nodal superconductors. Phys. Rev. B 107, 174506 (2023).

    CAS  Google Scholar 

  61. Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    CAS  Google Scholar 

  62. Si, Q. & Hussey, N. E. Iron-based superconductors: teenage, complex, challenging. Phys. Today 76, 34–40 (2023).

    CAS  Google Scholar 

  63. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    CAS  PubMed  Google Scholar 

  64. Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, R., Hu, H., Nica, E. M., Zhu, J.-X. & Si, Q. Orbital selectivity in electron correlations and superconducting pairing of iron-based superconductors. Front. Phys. 9, 578347 (2021).

    Google Scholar 

  66. Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1−xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010).

    Google Scholar 

  67. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182 (2018).

    PubMed  Google Scholar 

  68. Urano, C. et al. LiV2O4 spinel as a heavy-mass Fermi liquid: anomalous transport and role of geometrical frustration. Phys. Rev. Lett. 85, 1052–1055 (2000).

    CAS  PubMed  Google Scholar 

  69. Miyoshi, K., Morikuni, E., Fujiwara, K., Takeuchi, J. & Hamasaki, T. Mass-enhanced Fermi-liquid ground state in Na1.5Co2O4. Phys. Rev. B 69, 132412 (2004).

    Google Scholar 

  70. Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804 (2013).

    CAS  PubMed  Google Scholar 

  71. Wakamatsu, K. et al. Thermoelectric signature of quantum critical phase in a doped spin-liquid candidate. Nat. Commun. 14, 3679 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).

    CAS  Google Scholar 

  73. Vaño, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    PubMed  Google Scholar 

  74. Liu, M. et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator. Sci. Adv. 7, eabi6339 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Moriya, T. Recent progress in the theory of itinerant electron magnetism. J. Magn. Magn. Mater. 14, 1–46 (1979).

    CAS  Google Scholar 

  76. Vonsovskii, S. V., Katsnel’son, M. I. & Trefilov, A. V. in The Physics of Metals and Metallography Vol. 76 (Interperiodica, 1993).

  77. Hausoel, A. et al. Local magnetic moments in iron and nickel at ambient and Earth’s core conditions. Nat. Commun. 8, 16062 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Google Scholar 

  79. Li, X., Kono, J., Si, Q. & Paschen, S. Is the optical conductivity of heavy fermion strange metals Planckian? Front. Electron. Mater. 2, 934691 (2023).

    Google Scholar 

  80. Qazilbash, M. M. et al. Electronic correlations in the iron pnictides. Nat. Phys. 5, 647–650 (2009).

    CAS  Google Scholar 

  81. Si, Q. Electrons on the verge. Nat. Phys. 5, 629–630 (2009).

    CAS  Google Scholar 

  82. Degiorgi, L. Electronic correlations in iron-pnictide superconductors and beyond: lessons learned from optics. New J. Phys. 13, 023011 (2011).

    Google Scholar 

  83. Schoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

  84. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179 (2015).

    CAS  PubMed  Google Scholar 

  85. Taupin, M. & Paschen, S. Are heavy fermion strange metals Planckian? Crystals 12, 251 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cava, R. J., van Dover, R. B., Batlogg, B. & Rietman, E. A. Bulk superconductivity at 36 K in La1.8Sr0.2CuO4. Phys. Rev. Lett. 58, 408–410 (1987).

    CAS  PubMed  Google Scholar 

  87. Cava, R. J. et al. Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9−δ. Phys. Rev. Lett. 58, 1676–1679 (1987).

    CAS  PubMed  Google Scholar 

  88. Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2−xSrxCuO4. Science 323, 603–607 (2009).

    CAS  PubMed  Google Scholar 

  89. Ye, L. et al. Hopping frustration-induced flat band and strange metallicity in a kagome metal. Nat. Phys. https://doi.org/10.1038/s41567-023-02360-5 (2024).

  90. Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).

    CAS  Google Scholar 

  91. Si, Q., Rabello, S., Ingersent, K. & Smith, J. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804 (2001).

    CAS  PubMed  Google Scholar 

  92. Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

    CAS  Google Scholar 

  93. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Google Scholar 

  94. Patel, A. A. & Sachdev, S. Theory of a Planckian metal. Phys. Rev. Lett. 123, 066601 (2019).

    CAS  PubMed  Google Scholar 

  95. Guo, H., Gu, Y. & Sachdev, S. Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode. Ann. Phys. 418, 168202 (2020).

    CAS  Google Scholar 

  96. Christos, M., Joshi, D. G., Sachdev, S. & Tikhanovskaya, M. Critical metallic phase in the overdoped random tJ model. Proc. Natl Acad. Sci. USA 119, e2206921119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Else, D. V. & Senthil, T. Strange metals as ersatz Fermi liquids. Phys. Rev. Lett. 127, 086601 (2021).

    CAS  PubMed  Google Scholar 

  98. Gegenwart, P. et al. Unconventional quantum criticality in YbRh2Si2. Physica B Condens. Matter 403, 1184–1188 (2008).

    CAS  Google Scholar 

  99. Tanatar, M. A. et al. Anisotropic violation of the Wiedemann–Franz law at a quantum critical point. Science 316, 1320 (2007).

    CAS  PubMed  Google Scholar 

  100. Oshikawa, M. Topological approach to Luttinger’s theorem and Fermi surface of a Kondo lattice. Phys. Rev. Lett. 84, 3370–3373 (2000).

    CAS  PubMed  Google Scholar 

  101. Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881 (2004).

    CAS  PubMed  Google Scholar 

  102. Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl Acad. Sci. USA 107, 14547 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Maksimovic, N. et al. Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5. Science 375, 76–81 (2022).

    CAS  PubMed  Google Scholar 

  104. Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

    CAS  PubMed  Google Scholar 

  105. Fang, Y. et al. Fermi surface transformation at the pseudogap critical point of a cuprate superconductor. Nat. Phys. 18, 558–564 (2022).

    CAS  Google Scholar 

  106. Huang, J. et al. Correlation-driven electronic reconstruction in FeTe1−xSex. Commun. Phys. 5, 29 (2022).

    CAS  Google Scholar 

  107. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

    PubMed  Google Scholar 

  108. Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5−xPdx (x = 1, 1.5). Phys. Rev. Lett. 75, 725–728 (1995).

    CAS  PubMed  Google Scholar 

  109. Fuhrman, W. T. et al. Pristine quantum criticality in a Kondo semimetal. Sci. Adv. 7, eabf9134 (2021).

    PubMed  PubMed Central  Google Scholar 

  110. Prochaska, L. et al. Singular charge fluctuations at a magnetic quantum critical point. Science 367, 285 (2020).

    CAS  PubMed  Google Scholar 

  111. Matsumoto, Y. et al. Quantum criticality without tuning in the mixed valence compound β-YbAlB4. Science 331, 316 (2011).

    CAS  PubMed  Google Scholar 

  112. Kobayashi, H. et al. Observation of a critical charge mode in a strange metal. Science 379, 908–912 (2023).

    CAS  PubMed  Google Scholar 

  113. Michon, B. et al. Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat. Nat. Commun. 14, 3033 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Valla, T. et al. Temperature dependent scattering rates at the Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 85, 828–831 (2000).

    CAS  PubMed  Google Scholar 

  115. Ekahana, S. A. et al. Anomalous quasiparticles in the zone center electron pocket of the kagomé ferromagnet Fe3Sn2. Preprint at https://arXiv.org/abs/2206.13750 (2022).

  116. Hu, H. et al. Unconventional superconductivity from Fermi surface fluctuations in strongly correlated metals. Preprint at https://arXiv.org/abs/2109.13224 (2021).

  117. Chen, L. et al. Shot noise in a strange metal. Science 382, 907–911 (2023).

    CAS  PubMed  Google Scholar 

  118. Bakali, E. et al. A Knudsen cell approach for the molecular beam epitaxy of the heavy fermion compound YbRh2Si2. J. Cryst. Growth 595, 126804 (2022).

    CAS  Google Scholar 

  119. Beenakker, C. W. J. & Büttiker, M. Suppression of shot noise in metallic diffusive conductors. Phys. Rev. B 46, 1889–1892 (1992).

    CAS  Google Scholar 

  120. Wang, Y. et al. Shot noise as a characterization of strongly correlated metals. Preprint at https://arXiv.org/abs/2211.11735 (2022).

  121. Nikolaenko, A., Sachdev, S. & Patel, A. A. Theory of shot noise in strange metals. Phys. Rev. Res. 5, 043143 (2023).

    CAS  Google Scholar 

  122. Zhou, Y., Jin, K.-H., Huang, H., Wang, Z. & Liu, F. Weyl points created by a three-dimensional flat band. Phys. Rev. B 99, 201105 (2019).

    CAS  Google Scholar 

  123. Wu, F., Zhang, R.-X. & Sarma, S. D. Three-dimensional topological twistronics. Phys. Rev. Res. 2, 022010 (2020).

    CAS  Google Scholar 

  124. Volkov, B. A. & Pankratov, O. Two-dimensional massless electrons in an inverted contact. JETP Lett. 42, 178 (1985).

    Google Scholar 

  125. Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).

    CAS  PubMed  Google Scholar 

  126. Hastings, M. B. Dirac structure, RVB, and Goldstone modes in the kagomé antiferromagnet. Phys. Rev. B 63, 014413 (2000).

    Google Scholar 

  127. Kondo, S. et al. LiV2O4: a heavy fermion transition metal oxide. Phys. Rev. Lett. 78, 3729–3732 (1997).

    CAS  Google Scholar 

  128. Huang, J. et al. Three-dimensional flat bands and Dirac cones in a pyrochlore superconductor. Preprint at https://arXiv.org/abs/2304.09066 (2023).

  129. Wakefield, J. P. et al. Three-dimensional flat bands in pyrochlore metal CaNi2. Nature 623, 301–306 (2023).

    CAS  PubMed  Google Scholar 

  130. Guo, H.-M. & Franz, M. Three-dimensional topological insulators on the pyrochlore lattice. Phys. Rev. Lett. 103, 206805 (2009).

    PubMed  Google Scholar 

  131. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Google Scholar 

  132. Dzsaber, S. et al. Control of electronic topology in a strongly correlated electron system. Nat. Commun. 13, 5729 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kushwaha, S. K. et al. Magnetic field-tuned Fermi liquid in a Kondo insulator. Nat. Commun. 10, 5487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tomczak, J. M. Isoelectronic tuning of heavy fermion systems: proposal to synthesize Ce3Sb4Pd3. Phys. Rev. B 101, 035116 (2020).

    CAS  Google Scholar 

  135. Hu, H. et al. Topological semimetals without quasiparticles. Preprint at https://arXiv.org/abs/2110.06182 (2021).

  136. Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    CAS  Google Scholar 

  137. Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).

    CAS  PubMed  Google Scholar 

  138. Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    Google Scholar 

  139. Chakraborty, T. et al. Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr2FeMoO6. Phys. Rev. B 106, 155141 (2022).

    CAS  Google Scholar 

  140. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    PubMed  Google Scholar 

  141. Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    CAS  PubMed  Google Scholar 

  142. Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  143. Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    PubMed  Google Scholar 

  144. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    PubMed  Google Scholar 

  145. Lu, Z. et al. Fractional quantum anomalous Hall effect in a graphene moiré superlattice. Preprint at https://arxiv.org/abs/2309.17436 (2023).

  146. Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684 (2019).

    CAS  PubMed  Google Scholar 

  147. Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523 (2020).

    CAS  PubMed  Google Scholar 

  148. Aoki, D. et al. Unconventional superconductivity in UTe2. J. Phys. Condens. Matter 34, 243002 (2022).

    CAS  Google Scholar 

  149. Khim, S. et al. Field-induced transition within the superconducting state of CeRh2As2. Science 373, 1012–1016 (2021).

    CAS  PubMed  Google Scholar 

  150. Yin, J.-X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    CAS  Google Scholar 

  151. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    CAS  PubMed  Google Scholar 

  152. Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    CAS  PubMed  Google Scholar 

  153. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    PubMed  Google Scholar 

  154. Crépel, V., Guerci, D., Cano, J., Pixley, J. H. & Millis, A. Topological superconductivity in doped magnetic moiré semiconductors. Phys. Rev. Lett. 131, 056001 (2023).

    PubMed  Google Scholar 

  155. Lin, Y.-P. Chiral flat band superconductivity from symmetry-protected three-band crossings. Phys. Rev. Res. 2, 043209 (2020).

    CAS  Google Scholar 

  156. Jiang, K. et al. Kagome superconductors AV3Sb5 (A= K, Rb, Cs). Natl Sci. Rev. 10, nwac199 (2023).

    CAS  PubMed  Google Scholar 

  157. Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Nayak, A. K. et al. Evidence of topological boundary modes with topological nodal-point superconductivity. Nat. Phys. 17, 1413–1419 (2021).

    CAS  Google Scholar 

  159. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    CAS  PubMed  Google Scholar 

  160. Herzog-Arbeitman, J., Peri, V., Schindler, F., Huber, S. D. & Bernevig, B. A. Superfluid weight bounds from symmetry and quantum geometry in flat bands. Phys. Rev. Lett. 128, 087002 (2022).

    CAS  PubMed  Google Scholar 

  161. Wolgast, S. et al. Low-temperature surface conduction in the Kondo insulator SmB6. Phys. Rev. B 88, 180405 (2013).

    Google Scholar 

  162. Eo, Y. S., Sun, K., Kurdak, C., Kim, D.-J. & Fisk, Z. Inverted resistance measurements as a method for characterizing the bulk and surface conductivities of three-dimensional topological insulators. Phys. Rev. Appl. 9, 044006 (2018).

    CAS  Google Scholar 

  163. Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014).

    CAS  PubMed  Google Scholar 

  164. Ohtsubo, Y. et al. Non-trivial surface states of samarium hexaboride at the (111) surface. Nat. Commun. 10, 2298 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Legner, M., Rüegg, A. & Sigrist, M. Surface-state spin textures and mirror Chern numbers in topological Kondo insulators. Phys. Rev. Lett. 115, 156405 (2015).

    PubMed  Google Scholar 

  166. Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287 (2015).

    CAS  PubMed  Google Scholar 

  167. Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 096604 (2017).

    PubMed  Google Scholar 

  168. Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    PubMed  Google Scholar 

  169. Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    CAS  Google Scholar 

  170. Pirie, H. et al. Visualizing the atomic-scale origin of metallic behavior in Kondo insulators. Science 379, 1214–1218 (2023).

    CAS  PubMed  Google Scholar 

  171. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    PubMed  Google Scholar 

  172. Caroli, C., De Gennes, P. G. & Matricon, J. Bound Fermion states on a vortex line in a type II superconductor. Phys. Lett. 9, 307–309 (1964).

    Google Scholar 

  173. Zhao, S. Y. F. et al. Emergent interfacial superconductivity between twisted cuprate superconductors. Preprint at https://arxiv.org/abs/2108.13455 (2021).

  174. Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital degree of freedom in iron-based superconductors. NPJ Quantum Mater. 2, 57 (2017).

    Google Scholar 

  175. Yu, R. & Si, Q. Orbital-selective Mott phase in multiorbital models for alkaline iron selenides K1−xFe2−ySe2. Phys. Rev. Lett. 110, 146402 (2013).

    PubMed  Google Scholar 

  176. Yu, R. & Si, Q. Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides. Phys. Rev. B 96, 125110 (2017).

    Google Scholar 

  177. Anisimov, V., Nekrasov, I., Kondakov, D., Rice, T. & Sigrist, M. Orbital-selective Mott-insulator transition in Ca2−xSrxRuO4. Eur. Phys. J. B 25, 191–201 (2002).

    CAS  Google Scholar 

  178. Komijani, Y. & Kotliar, G. Analytical slave-spin mean-field approach to orbital selective Mott insulators. Phys. Rev. B 96, 125111 (2017).

    Google Scholar 

  179. Dai, J., Si, Q., Zhu, J.-X. & Abrahams, E. Iron pnictides as a new setting for quantum criticality. Proc. Natl Acad. Sci. USA 106, 4118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Shibauchi, T., Carrington, A. & Matsuda, Y. A quantum critical point lying beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014).

    CAS  Google Scholar 

  181. Senthil, T. Critical Fermi surfaces and non-Fermi liquid metals. Phys. Rev. B 78, 035103 (2008).

    Google Scholar 

  182. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    CAS  PubMed  Google Scholar 

  183. Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

    CAS  PubMed  Google Scholar 

  184. Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    CAS  PubMed  Google Scholar 

  185. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653 (2019).

    CAS  PubMed  Google Scholar 

  186. Shaginyan, V. R. et al. Fermion condensation, T-linear resistivity, and Planckian limit. JETP Lett. 110, 290–295 (2019).

    CAS  Google Scholar 

  187. Choi, Y. et al. Tracing out correlated Chern insulators in magic angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2008.11746 (2020).

  188. Lu, X. et al. Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proc. Natl Acad. Sci. USA 118, e2100006118 (2021).

    Google Scholar 

  189. Kang, J. & Vafek, O. Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018).

    CAS  Google Scholar 

  190. Bultinck, N. et al. Ground state and hidden symmetry of magic-angle graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).

    CAS  Google Scholar 

  191. Bernevig, B. A., Song, Z.-D., Regnault, N. & Lian, B. Twisted bilayer graphene. III. Interacting Hamiltonian and exact symmetries. Phys. Rev. B 103, 205413 (2021).

    CAS  Google Scholar 

  192. Xie, M. & MacDonald, A. H. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).

    CAS  PubMed  Google Scholar 

  193. Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

    CAS  PubMed  Google Scholar 

  194. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174 (2019).

    CAS  Google Scholar 

  195. Kang, J. & Vafek, O. Strong coupling phases of partially filled twisted bilayer graphene narrow bands. Phys. Rev. Lett. 122, 246401 (2019).

    CAS  PubMed  Google Scholar 

  196. Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

    CAS  Google Scholar 

  197. Vafek, O. & Kang, J. Lattice model for the Coulomb interacting chiral limit of magic-angle twisted bilayer graphene: symmetries, obstructions, and excitations. Phys. Rev. B 104, 075143 (2021).

    CAS  Google Scholar 

  198. Zou, L., Po, H. C., Vishwanath, A. & Senthil, T. Band structure of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions. Phys. Rev. B 98, 085435 (2018).

    CAS  Google Scholar 

  199. Zhang, X., Pan, G., Zhang, Y., Kang, J. & Meng, Z. Y. Momentum space quantum Monte Carlo on twisted bilayer graphene. Chin. Phys. Lett. 38, 077305 (2021).

    CAS  Google Scholar 

  200. Cea, T. & Guinea, F. Band structure and insulating states driven by Coulomb interaction in twisted bilayer graphene. Phys. Rev. B 102, 045107 (2020).

    CAS  Google Scholar 

  201. Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    CAS  PubMed  Google Scholar 

  202. Song, Z.-D., Lian, B., Regnault, N. & Bernevig, B. A. Twisted bilayer graphene. II. Stable symmetry anomaly. Phys. Rev. B 103, 205412 (2021).

    CAS  Google Scholar 

  203. Shi, H. & Dai, X. Heavy-fermion representation for twisted bilayer graphene systems. Phys. Rev. B 106, 245129 (2022).

    CAS  Google Scholar 

  204. Hu, H. et al. Symmetric Kondo lattice states in doped strained twisted bilayer graphene. Phys. Rev. Lett. 131, 166501 (2023).

    CAS  PubMed  Google Scholar 

  205. Zhou, G.-D. & Song, Z.-D. Kondo phase in twisted bilayer graphene — a unified theory for distinct experiments. Preprint at https://arxiv.org/abs/2301.04661 (2023).

  206. Huang, C. et al. Evolution from quantum anomalous Hall insulator to heavy-fermion semimetal in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2304.14064 (2023).

  207. Chou, Y.-Z. & Das Sarma, S. Kondo lattice model in magic-angle twisted bilayer graphene. Phys. Rev. Lett. 131, 026501 (2023).

    CAS  PubMed  Google Scholar 

  208. Hu, H., Bernevig, B. A. & Tsvelik, A. M. Kondo lattice model of magic-angle twisted-bilayer graphene: Hund’s rule, local-moment fluctuations, and low-energy effective theory. Phys. Rev. Lett. 131, 026502 (2023).

    CAS  PubMed  Google Scholar 

  209. Lau, L. L. H. & Coleman, P. Topological mixed valence model for twisted bilayer graphene. Preprint at https://arxiv.org/abs/2303.02670 (2023).

  210. Datta, A., Calderón, M. J., Camjayi, A. & Bascones, E. Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene. Nat. Commun. 14, 5036 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    CAS  PubMed  Google Scholar 

  212. Huang, J. et al. Non-Fermi liquid behaviour in a correlated flat-band pyrochlore lattice. Nat. Phys. https://doi.org/10.1038/s41567-023-02362-3 (2024).

  213. Bergman, D. L., Wu, C. & Balents, L. Band touching from real-space topology in frustrated hopping models. Phys. Rev. B 78, 125104 (2008).

    Google Scholar 

  214. Chen, L. et al. Metallic quantum criticality enabled by flat bands in a kagome lattice. Preprint at https://arxiv.org/abs/2307.09431 (2023).

  215. Chen, L. et al. Emergent flat band and topological Kondo semimetal driven by orbital-selective correlations. Preprint at https://arxiv.org/abs/2212.08017 (2022).

  216. Hu, H. & Si, Q. Coupled topological flat and wide bands: quasiparticle formation and destruction. Sci. Adv. 9, eadg0028 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    PubMed  Google Scholar 

  218. Wagner, C., Chowdhury, T., Pixley, J. H. & Ingersent, K. Long-range entanglement near a Kondo-destruction quantum critical point. Phys. Rev. Lett. 121, 147602 (2018).

    CAS  PubMed  Google Scholar 

  219. Hauke, P., Heyl, M., Tagliacozzo, L. & Zoller, P. Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys. 12, 778–782 (2016).

    CAS  Google Scholar 

  220. Barišić, N. et al. Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors. Proc. Natl Acad. Sci. USA 110, 12235 (2013).

    PubMed  PubMed Central  Google Scholar 

  221. Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142 (2019).

    CAS  Google Scholar 

  222. Shishido, H. et al. Evolution of the Fermi surface of BaFe2(As1−xPx)2 on entering the superconducting dome. Phys. Rev. Lett. 104, 057008 (2010).

    CAS  PubMed  Google Scholar 

  223. Zhong, S. et al. Origin of magnetoresistance suppression in thin γ-MoTe2. Phys. Rev. B 97, 241409 (2018).

    CAS  Google Scholar 

  224. Kirschbaum, D. M., Lužnik, M., Roy, G. L. & Paschen, S. How to identify and characterize strongly correlated topological semimetals. J. Phys. Mater. 7, 012003 (2024).

    Google Scholar 

  225. Haubold, E. et al. Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe4. Phys. Rev. B 95, 241108 (2017).

    Google Scholar 

  226. Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett. 80, 5623–5626 (1998).

    Google Scholar 

  227. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Analytis, D. Calugaru, J. Cano, L. Chen, R. Comin, L. Crippa, P. Dai, X. Dai, L. Deng, D. Efetov, S. Fang, S. Grefe, P. Guinea, T. Hazra, J. Hertzog Arbeitman, J. Hoffman, H. Hu, J. Huang, K. Ingersent, O. Jansen, P. Jarillo-Herrero, A. Kandala, S. Kirchner, D. Kirschbaum, L. Lau, G. Le Roy, X. Li, G. Lonzarich, M. Lužnik, V. Madhavan, M. Mahankali, D. Natelson, J. P. Paglione, A. Panigrahi, J. Pixley, G. Rai, N. Regnault, G. Sangiovanni, S. Sebastian, T. Senthil, C. Setty, Z. Song, F. Steglich, S. Sur, M. Taupin, A. Tsvelik, O. Vafek, R. Valenti, M. Vergniory, Y. Wang, T. Wehling, F. Xie, B. J. Yang, L. Ye, M. Yi, J. Yu, R. Yu and Z. Zhuang for collaborations and discussions, which were in part conducted at the Kavli Institute for Theoretical Physics at UC Santa Barbara, where support was provided by the US National Science Foundation (NSF) under Grant No. NSF PHY-1748958, and at the Aspen Center for Physics, which is supported by NSF Grant No. PHY-2210452. J.G.C. was supported by the Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF9070). The work of B.A.B. was primarily supported by the US Department of Energy (DOE) Grant No. DE-SC0016239 and the Betty Moore Foundation’s EPiQS Initiative (Grant No. GBMF11070). Q.S. is primarily supported by the US DOE, BES, under Award No. DE-SC0018197, by the Robert A. Welch Foundation Grant No. C-1411 and by the Vannevar Bush Faculty Fellowship ONR-VB N00014-23-1-2870. P.C. was supported by NSF grant DMR-1830707. S.P. acknowledges funding from the Austrian Science Fund (I5868-FOR 5249 QUAST, F86-SFB Q-M&S), the European Union’s Horizon 2020 Research and Innovation Programme (824109, EMP) and the European Research Council (ERC Advanced Grant 101055088, CorMeTop).

Author information

Authors and Affiliations

Authors

Contributions

J.G.C. and S.P. researched data for the article. All authors contributed to the discussion of the content and the writing and editing of the article before submission.

Corresponding author

Correspondence to Silke Paschen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Checkelsky, J.G., Bernevig, B.A., Coleman, P. et al. Flat bands, strange metals and the Kondo effect. Nat Rev Mater 9, 509–526 (2024). https://doi.org/10.1038/s41578-023-00644-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00644-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing