Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restoring, releasing or replacing adaptive immunity in chronic hepatitis B

Abstract

Multiple new therapeutic approaches are currently being developed to achieve sustained, off-treatment suppression of HBV, a persistent hepatotropic infection that kills ~2,000 people a day. A fundamental therapeutic goal is the restoration of robust HBV-specific adaptive immune responses that are able to maintain prolonged immunosurveillance of residual infection. Here, we provide insight into key components of successful T cell and B cell responses to HBV, discussing the importance of different specificities and effector functions, local intrahepatic immunity and pathogenic potential. We focus on the parallels and interactions between T cell and B cell responses, highlighting emerging areas for future investigation. We review the potential for different immunotherapies in development to restore or release endogenous adaptive immunity by direct or indirect approaches, including limitations and risks. Finally, we consider an alternative HBV treatment strategy of replacing failed endogenous immunity with infusions of highly targeted T cells or antibodies.

Key points

  • Unprecedented opportunities exist to develop immunotherapeutic approaches that complement novel antiviral agents to achieve sustained control of residual HBV in chronic HBV infection (CHB).

  • Adaptive immune responses (HBV-specific T cells and B cells) provide precise antiviral targeting of HBV-infected hepatocytes and/or virions, but also have the potential to trigger tissue damage.

  • HBV-specific T cell and B cell responses should be examined in parallel to consider their crosstalk, complementary effector mechanisms and their features of dysfunction in CHB.

  • Inadequate HBV-specific T cell and B cell responses might be restored by immunogenic therapeutic vaccines and might be released from inhibition by antigen load reduction or more specific immunomodulation such as checkpoint inhibition.

  • Alternatively, the failed endogenous adaptive response can be replaced with targeted exogenous T cell- or B cell-derived HBV-specific effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antiviral functions of HBV-specific CD8+ T cells.
Fig. 2: Antiviral functions of B cells and antibodies in HBV infection.
Fig. 3: Interactions between B cells and CD4+ T cells.
Fig. 4: Modulation of adaptive immunity by immunotherapeutic approaches.

Similar content being viewed by others

References

  1. Tassopoulos, N. C. et al. Natural history of acute hepatitis B surface antigen-positive hepatitis in Greek adults. Gastroenterology 92, 1844–1850 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Cooke, G. S. et al. Accelerating the elimination of viral hepatitis: a Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol. Hepatol. 4, 135–184 (2019).

    Article  PubMed  Google Scholar 

  3. Lazarus, J. V. et al. The hepatitis B epidemic and the urgent need for cure preparedness. Nat. Rev. Gastroenterol. Hepatol. 15, 517–518 (2018).

    Article  PubMed  Google Scholar 

  4. Revill, P. A. et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 4, 545–558 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seto, W. K., Lo, Y. R., Pawlotsky, J. M. & Yuen, M. F. Chronic hepatitis B virus infection. Lancet 392, 2313–2324 (2018).

    Article  PubMed  Google Scholar 

  6. Levrero, M., Subic, M., Villeret, F. & Zoulim, F. Perspectives and limitations for nucleo(t)side analogs in future HBV therapies. Curr. Opin. Virol. 30, 80–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Xia, Y. & Liang, T. J. Development of direct-acting antiviral and host-targeting agents for treatment of hepatitis B virus infection. Gastroenterology 156, 311–324 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Brahmania, M., Feld, J., Arif, A. & Janssen, H. L. New therapeutic agents for chronic hepatitis B. Lancet Infect. Dis. 16, e10–e21 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Ko, C., Michler, T. & Protzer, U. Novel viral and host targets to cure hepatitis B. Curr. Opin. Virol. 24, 38–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Asabe, S. et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection. J. Virol. 83, 9652–9662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rehermann, B., Ferrari, C., Pasquinelli, C. & Chisari, F. V. The hepatitis B virus persists for decades after patients’ recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat. Med. 2, 1104–1108 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Lok, A. S., Zoulim, F., Dusheiko, G. & Ghany, M. G. Hepatitis B cure: from discovery to regulatory approval. J. Hepatol. 67, 847–861 (2017).

    Article  PubMed  Google Scholar 

  13. Mason, W. S. et al. HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology 151, 986–998.e4 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Wooddell, C. I. et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl Med. 9, eaan0241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Maini, M. K. & Gehring, A. J. The role of innate immunity in the immunopathology and treatment of HBV infection. J. Hepatol. 64, S60–S70 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Maini, M. K. & Pallett, L. J. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol. Hepatol. 3, 192–202 (2018).

    Article  PubMed  Google Scholar 

  19. Suslov, A., Wieland, S. & Menne, S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Curr. Opin. Virol. 30, 9–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bertoletti, A. & Ferrari, C. Adaptive immunity in HBV infection. J. Hepatol. 64, S71–S83 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Shin, E. C., Sung, P. S. & Park, S. H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 16, 509–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Loomba, R. & Liang, T. J. Hepatitis B reactivation associated with immune suppressive and biological modifier therapies: current concepts, management strategies, and future directions. Gastroenterology 152, 1297–1309 (2017).

    Article  PubMed  Google Scholar 

  23. Burton, A. R. et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J. Clin. Invest. 128, 4588–4603 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neumann-Haefelin, C. & Thimme, R. Entering the spotlight: hepatitis B surface antigen-specific B cells. J. Clin. Invest. 128, 4257–4259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Salimzadeh, L. et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J. Clin. Invest. 128, 4573–4587 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cannon, J. P., Haire, R. N., Rast, J. P. & Litman, G. W. The phylogenetic origins of the antigen-binding receptors and somatic diversification mechanisms. Immunol. Rev. 200, 12–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Bertoletti, A. et al. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J. Exp. Med. 180, 933–943 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Bertoletti, A. et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 369, 407–410 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Rehermann, B., Pasquinelli, C., Mosier, S. M. & Chisari, F. V. Hepatitis B virus (HBV) sequence variation of cytotoxic T lymphocyte epitopes is not common in patients with chronic HBV infection. J. Clin. Invest. 96, 1527–1534 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rehermann, B. & Thimme, R. Insights from antiviral therapy into immune responses to hepatitis B and C virus infection. Gastroenterology 156, 369–383 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Desmond, C. P. et al. Viral adaptation to host immune responses occurs in chronic hepatitis B virus (HBV) infection, and adaptation is greatest in HBV e antigen-negative disease. J. Virol. 86, 1181–1192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kefalakes, H. et al. Adaptation of the hepatitis B virus core protein to CD8(+) T-cell selection pressure. Hepatology 62, 47–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Maini, M. K. et al. Direct ex vivo analysis of hepatitis B virus-specific CD8(+) T cells associated with the control of infection. Gastroenterology 117, 1386–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Webster, G. J. et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J. Virol. 78, 5707–5719 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rivino, L. et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J. Clin. Invest. 128, 668–681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boni, C. et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215–4225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park, J. J. et al. Hepatitis B virus-specific and global T-cell dysfunction in chronic hepatitis B. Gastroenterology 150, 684–695.e5 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Schuch, A. et al. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load. Gut 68, 905–915 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Hoogeveen, R. C. et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 68, 893–904 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Khakpoor, A. et al. Spatiotemporal differences in presentation of CD8 T cell epitopes during HBV infection. J. Virol. 93, e01457-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gerlich, W. H. Medical virology of hepatitis B: how it began and where we are now. Virol. J. 10, 239 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hoofnagle, J. H., Gerety, R. J. & Barker, L. F. Antibody to hepatitis-B-virus core in man. Lancet 2, 869–873 (1973).

    Article  CAS  PubMed  Google Scholar 

  43. Pignatelli, M. et al. Cytotoxic T-cell responses to the nucleocapsid proteins of HBV in chronic hepatitis. Evidence that antibody modulation may cause protracted infection. J. Hepatol. 4, 15–21 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Farci, P. et al. B cell gene signature with massive intrahepatic production of antibodies to hepatitis B core antigen in hepatitis B virus-associated acute liver failure. Proc. Natl Acad. Sci. USA 107, 8766–8771 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen, Z. et al. Role of humoral immunity against hepatitis B virus core antigen in the pathogenesis of acute liver failure. Proc. Natl Acad. Sci. USA 115, E11369–E11378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuan, Q. et al. Total hepatitis B core antigen antibody, a quantitative non-invasive marker of hepatitis B virus induced liver disease. PLOS ONE 10, e0130209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuen, M. F. et al. Hepatitis B virus infection. Nat. Rev. Dis. Primers 4, 18035 (2018).

    Article  PubMed  Google Scholar 

  48. Beasley, R. P. et al. Hepatitis B immune globulin (HBIG) efficacy in the interruption of perinatal transmission of hepatitis B virus carrier state. Initial report of a randomised double-blind placebo-controlled trial. Lancet 2, 388–393 (1981).

    Article  CAS  PubMed  Google Scholar 

  49. Shouval, D. & Samuel, D. Hepatitis B immune globulin to prevent hepatitis B virus graft reinfection following liver transplantation: a concise review. Hepatology 32, 1189–1195 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Tian, C. et al. Use of ELISpot assay to study HBs-specific B cell responses in vaccinated and HBV infected humans. Emerg. Microbes Infect. 7, 16 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Xu, X. et al. Reversal of B-cell hyperactivation and functional impairment is associated with HBsAg seroconversion in chronic hepatitis B patients. Cell Mol. Immunol. 12, 309–316 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guidotti, L. G. & Chisari, F. V. Immunobiology and pathogenesis of viral hepatitis. Annu. Rev. Pathol. 1, 23–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Guidotti, L. G., Isogawa, M. & Chisari, F. V. Host-virus interactions in hepatitis B virus infection. Curr. Opin. Immunol. 36, 61–66 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thimme, R. et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guidotti, L. G. et al. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4, 25–36 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Hoh, A. et al. Hepatitis B virus-infected HepG2hNTCP cells serve as a novel immunological tool to analyze the antiviral efficacy of CD8+ T cells in vitro. J. Virol. 89, 7433–7438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Phillips, S. et al. CD8(+) T cell control of hepatitis B virus replication: direct comparison between cytolytic and noncytolytic functions. J. Immunol. 184, 287–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Xia, Y. et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 150, 194–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Lucifora, J. et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 343, 1221–1228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koh, S. et al. Nonlytic lymphocytes engineered to express virus-specific T-cell receptors limit HBV infection by activating APOBEC3. Gastroenterology 155, 180–193.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Corti, D. & Lanzavecchia, A. Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 31, 705–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Hangartner, L., Zinkernagel, R. M. & Hengartner, H. Antiviral antibody responses: the two extremes of a wide spectrum. Nat. Rev. Immunol. 6, 231–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Cerino, A., Bremer, C. M., Glebe, D. & Mondelli, M. U. A human monoclonal antibody against hepatitis B surface antigen with potent neutralizing activity. PLOS ONE 10, e0125704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Glebe, D. et al. Pre-s1 antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus. J. Virol. 77, 9511–9521 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ni, Y. et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146, 1070–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Urban, S., Bartenschlager, R., Kubitz, R. & Zoulim, F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 147, 48–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Petersen, J. et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 26, 335–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Tu, T. & Urban, S. Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr. Opin. Virol. 30, 68–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Sureau, C. & Salisse, J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus a-determinant. Hepatology 57, 985–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Gerlich, W. H. The enigma of concurrent hepatitis B surface antigen (HBsAg) and antibodies to HBsAg. Clin. Infect. Dis. 44, 1170–1172 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Madalinski, K., Burczynska, B., Heermann, K. H., Uy, A. & Gerlich, W. H. Analysis of viral proteins in circulating immune complexes from chronic carriers of hepatitis B virus. Clin. Exp. Immunol. 84, 493–500 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hessell, A. J. et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449, 101–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Chu, C. M. & Liaw, Y. F. Intrahepatic distribution of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Gastroenterology 92, 220–225 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. Ray, M. B. et al. Distribution patterns of hepatitis B surface antigen (HBsAg) in the liver of hepatitis patients. J. Clin. Pathol. 29, 94–100 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Neumann, A. U. et al. Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. Hepatology 52, 875–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Schilling, R. et al. Endocytosis of hepatitis B immune globulin into hepatocytes inhibits the secretion of hepatitis B virus surface antigen and virions. J. Virol. 77, 8882–8892 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bournazos, S. & Ravetch, J. V. Fcγ receptor function and the design of vaccination strategies. Immunity 47, 224–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, H. et al. Immuno-potentiating pathway of HBsAg-HBIG immunogenic complex visualized. Hum. Vaccin. Immunother. 12, 77–84 (2016).

    Article  PubMed  Google Scholar 

  81. Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Duddy, M. E., Alter, A. & Bar-Or, A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J. Immunol. 172, 3422–3427 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Bouezzedine, F., Fardel, O. & Gripon, P. Interleukin 6 inhibits HBV entry through NTCP down regulation. Virology 481, 34–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Hosel, M. et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 50, 1773–1782 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Palumbo, G. A. et al. IL6 inhibits HBV transcription by targeting the epigenetic control of the nuclear cccDNA minichromosome. PLOS ONE 10, e0142599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Karnowski, A. et al. B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J. Exp. Med. 209, 2049–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crotty, S. A brief history of T cell help to B cells. Nat. Rev. Immunol. 15, 185–189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Milich, D. R. & McLachlan, A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 234, 1398–1401 (1986).

    Article  CAS  PubMed  Google Scholar 

  90. Penna, A. et al. Long-lasting memory T cell responses following self-limited acute hepatitis B. J. Clin. Invest. 98, 1185–1194 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Raziorrouh, B. et al. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules. PLOS ONE 9, e105703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dusheiko, G. M., Hoofnagle, J. H., Cooksley, W. G., James, S. P. & Jones, E. A. Synthesis of antibodies to hepatitis B virus by cultured lymphocytes from chronic hepatitis B surface antigen carriers. J. Clin. Invest. 71, 1104–1113 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, R., Xie, R. & Song, Z. Circulating regulatory Tfh cells are enriched in patients with chronic hepatitis B infection and induce the differentiation of regulatory B cells. Exp. Cell. Res. 365, 171–176 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, X. et al. Dysregulated response of follicular helper T cells to hepatitis B surface antigen promotes HBV persistence in mice and associates with outcomes of patients. Gastroenterology 154, 2222–2236 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Wu, X. et al. Increased circulating follicular regulatory T-like cells may play a critical role in chronic hepatitis B virus infection and disease progression. Viral Immunol. 31, 379–388 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Milich, D. R. et al. Role of B cells in antigen presentation of the hepatitis B core. Proc. Natl Acad. Sci. USA 94, 14648–14653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Whitacre, D. C., Lee, B. O. & Milich, D. R. Use of hepadnavirus core proteins as vaccine platforms. Expert. Rev. Vaccines 8, 1565–1573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lazdina, U. et al. Priming of cytotoxic T cell responses to exogenous hepatitis B virus core antigen is B cell dependent. J. Gen. Virol. 84, 139–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Barnaba, V., Franco, A., Alberti, A., Benvenuto, R. & Balsano, F. Selective killing of hepatitis B envelope antigen-specific B cells by class I-restricted, exogenous antigen-specific T lymphocytes. Nature 345, 258–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Das, A. et al. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J. Immunol. 189, 3925–3935 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Hawke, S., Stevenson, P. G., Freeman, S. & Bangham, C. R. Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. J. Exp. Med. 187, 1575–1582 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Rosato, P. C., Beura, L. K. & Masopust, D. Tissue resident memory T cells and viral immunity. Curr. Opin. Virol. 22, 44–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maini, M. K. et al. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Murakami, J. et al. Functional B-cell response in intrahepatic lymphoid follicles in chronic hepatitis C. Hepatology 30, 143–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Adachi, Y. et al. Distinct germinal center selection at local sites shapes memory B cell response to viral escape. J. Exp. Med. 212, 1709–1723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lefkowitch, J. H. et al. Pathological diagnosis of chronic hepatitis C: a multicenter comparative study with chronic hepatitis B. The Hepatitis Interventional Therapy Group. Gastroenterology 104, 595–603 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Li, L. et al. Anti-HBV response to toll-like receptor 7 agonist GS-9620 is associated with intrahepatic aggregates of T cells and B cells. J. Hepatol. 68, 912–921 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Gill, U. S., Pallett, L. J., Kennedy, P. T. F. & Maini, M. K. Liver sampling: a vital window into HBV pathogenesis on the path to functional cure. Gut 67, 767–775 (2018).

    CAS  PubMed  Google Scholar 

  113. Gill, U. S. et al. Fine needle aspirates comprehensively sample intrahepatic immunity. Gut 68, 1493–1503 (2018).

    Article  PubMed  Google Scholar 

  114. Maini, M. K. & Bertoletti, A. How can the cellular immune response control hepatitis B virus replication? J. Viral Hepat. 7, 321–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Bertoletti, A. & Maini, M. K. Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection? Curr. Opin. Immunol. 12, 403–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Allweiss, L. et al. Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 67, 542–552 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Zong, L. et al. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nat. Commun. 10, 221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lim, S. G., Agcaoili, J., De Souza, N. N. A. & Chan, E. Therapeutic vaccination for chronic hepatitis B: a systematic review and meta-analysis. J. Viral Hepat. 26, 803–817 (2019).

    PubMed  Google Scholar 

  119. Michel, M. L., Deng, Q. & Mancini-Bourgine, M. Therapeutic vaccines and immune-based therapies for the treatment of chronic hepatitis B: perspectives and challenges. J. Hepatol. 54, 1286–1296 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Dembek, C., Protzer, U. & Roggendorf, M. Overcoming immune tolerance in chronic hepatitis B by therapeutic vaccination. Curr. Opin. Virol. 30, 58–67 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Kosinska, A. D., Bauer, T. & Protzer, U. Therapeutic vaccination for chronic hepatitis B. Curr. Opin. Virol. 23, 75–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Ha, S. J. et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J. Exp. Med. 205, 543–555 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, J. et al. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLOS Pathog. 10, e1003856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fisicaro, P. et al. Anti-viral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138, 682–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Isogawa, M., Furuichi, Y. & Chisari, F. V. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver. Immunity 23, 53–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T. & Honjo, T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med. 198, 39–50 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gane, E. et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: a pilot study. J. Hepatol. https://doi.org/10.1016/j.jhep.2019.06.028 (2019).

    Article  PubMed  Google Scholar 

  129. Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity 48, 1029–1045.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Utzschneider, D. T. et al. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. Cell Rep. 22, 3454–3467 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Wieland, D. et al. TCF1(+) hepatitis C virus-specific CD8(+) T cells are maintained after cessation of chronic antigen stimulation. Nat. Commun. 8, 15050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Otano, I. et al. Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver. Mol. Ther. 26, 2553–2566 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nebbia, G. et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLOS ONE 7, e47648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schurich, A. et al. Role of the co-inhibitory receptor CTLA-4 on apoptosis-prone CD8 T cells in persistent HBV infection. Hepatology 53, 1494–1503 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Inarrairaegui, M., Melero, I. & Sangro, B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin. Cancer Res. 24, 1518–1524 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Titanji, K. et al. Acute depletion of activated memory B cells involves the PD-1 pathway in rapidly progressing SIV-infected macaques. J. Clin. Invest. 120, 3878–3890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Barnett, B. E. et al. Cutting edge: B cell-intrinsic T-bet expression is required to control chronic viral infection. J. Immunol. 197, 1017–1022 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Knox, J. J. et al. T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2, 92943 (2017).

    Article  PubMed  Google Scholar 

  142. Rubtsova, K., Rubtsov, A. V., van Dyk, L. F., Kappler, J. W. & Marrack, P. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proc. Natl Acad. Sci. USA 110, E3216–E3224 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Naradikian, M. S., Hao, Y. & Cancro, M. P. Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol. Rev. 269, 118–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Micco, L. et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J. Hepatol. 58, 225–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Penna, A. et al. Peginterferon-alpha does not improve early peripheral blood HBV-specific T-cell responses in HBeAg-negative chronic hepatitis. J. Hepatol. 56, 1239–1246 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Schurich, A. et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PLOS Pathog. 9, e1003208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23, 327–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity 45, 358–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Lasek, W., Zagozdzon, R. & Jakobisiak, M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother. 63, 419–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dunn, C. et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med. 204, 667–680 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rehermann, B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat. Med. 19, 859–868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394–398 (2012).

    Article  CAS  Google Scholar 

  156. Waggoner, S. N. et al. Roles of natural killer cells in antiviral immunity. Curr. Opin. Virol. 16, 15–23 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huang, W. C. et al. T cells infiltrating diseased liver express ligands for the NKG2D stress surveillance system. J. Immunol. 198, 1172–1182 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Boni, C. et al. Natural killer cell phenotype modulation and natural killer/T-cell interplay in nucleos(t)ide analogue-treated hepatitis e antigen-negative patients with chronic hepatitis B. Hepatology 62, 1697–1709 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Attanasio, J. & Wherry, E. J. Costimulatory and coinhibitory receptor pathways in infectious disease. Immunity 44, 1052–1068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fisicaro, P., Boni, C., Barili, V., Laccabue, D. & Ferrari, C. Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming. Curr. Opin. Virol. 30, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Kelly, P. N. CD28 is a critical target for PD-1 blockade. Science 355, 1386 (2017).

    CAS  PubMed  Google Scholar 

  165. Bengsch, B., Martin, B. & Thimme, R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J. Hepatol. 61, 1212–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pallett, L. J. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat. Med. 21, 591–600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sandalova, E. et al. Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells. Gastroenterology 143, 78–87.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kardava, L. et al. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors. J. Clin. Invest. 121, 2614–2624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Boni, C. et al. TLR7 agonist increases responses of hepatitis B virus-specific T cells and natural killer cells in patients with chronic hepatitis B treated with nucleos(t)ide analogues. Gastroenterology 154, 1764–1777 e1767 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Janssen, H. L. A. et al. Safety, efficacy and pharmacodynamics of vesatolimod (GS-9620) in virally suppressed patients with chronic hepatitis B. J. Hepatol. 68, 431–440 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Davidson, S., Maini, M. K. & Wack, A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J. Interferon Cytokine Res. 35, 252–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kurktschiev, P. D. et al. Dysfunctional CD8+ T cells in hepatitis B and C are characterized by a lack of antigen-specific T-bet induction. J. Exp. Med. 211, 2047–2059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mueller, S. N. & Ahmed, R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 106, 8623–8628 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Portugal, S., Obeng-Adjei, N., Moir, S., Crompton, P. D. & Pierce, S. K. Atypical memory B cells in human chronic infectious diseases: an interim report. Cell. Immunol. 321, 18–25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hofmann, M., Wieland, D., Pircher, H. & Thimme, R. Memory vs memory-like: the different facets of CD8(+) T-cell memory in HCV infection. Immunol. Rev. 283, 232–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wieland, D., Hofmann, M. & Thimme, R. Overcoming CD8+ T-cell exhaustion in viral hepatitis: lessons from the mouse model and clinical perspectives. Dig. Dis. 35, 334–338 (2017).

    Article  PubMed  Google Scholar 

  180. Bazinet, M. et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): a non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2, 877–889 (2017).

    Google Scholar 

  181. Moreno-Cubero, E. et al. Is it possible to stop nucleos(t)ide analogue treatment in chronic hepatitis B patients? World J. Gastroenterol. 24, 1825–1838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rinker, F. et al. Hepatitis B virus-specific T cell responses after stopping nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. J. Hepatol. 69, 584–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Berg, T. et al. Long-term response after stopping tenofovir disoproxil fumarate in non-cirrhotic HBeAg-negative patients – FINITE study. J. Hepatol. 67, 918–924 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Bertoletti, A. & Rivino, L. Hepatitis B: future curative strategies. Curr. Opin. Infect. Dis. 27, 528–534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gehring, A. & Protzer, U. Targeting innate and adaptive immune responses to cure chronic HBV infection. Gastroenterology 156, 325–337 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Bohne, F. et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology 134, 239–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Krebs, K. et al. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology 145, 456–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Gehring, A. J. et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J. Hepatol. 55, 103–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Qasim, W. et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol. 62, 486–491 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Tan, A. T. et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T cells for immunotherapy. Gastroenterology 156, 1862–1876.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Kah, J. et al. Lymphocytes transiently expressing virus-specific T cell receptors reduce hepatitis B virus infection. J. Clin. Invest. 127, 3177–3188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Wisskirchen, K. et al. T cell receptor grafting allows virological control of hepatitis B virus infection. J. Clin. Invest. 130 (2019).

  194. Legut, M., Dolton, G., Mian, A. A., Ottmann, O. G. & Sewell, A. K. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131, 311–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Koh, S. et al. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol. Ther. Nucleic Acids 2, e114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Oates, J., Hassan, N. J. & Jakobsen, B. K. ImmTACs for targeted cancer therapy: why, what, how, and which. Mol. Immunol. 67, 67–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Yang, H. et al. Elimination of latently HIV-infected cells from antiretroviral therapy-suppressed subjects by engineered immune-mobilizing T-cell receptors. Mol. Ther. 24, 1913–1925 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLOS Pathog 10, e1004210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Caskey, M., Klein, F. & Nussenzweig, M. C. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat. Med. 25, 547–553 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bar-On, Y. et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat. Med. 24, 1701–1707 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561, 479–484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Eren, R. et al. Preclinical evaluation of two human anti-hepatitis B virus (HBV) monoclonal antibodies in the HBV-trimera mouse model and in HBV chronic carrier chimpanzees. Hepatology 32, 588–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. Galun, E. et al. Clinical evaluation (phase I) of a combination of two human monoclonal antibodies to HBV: safety and antiviral properties. Hepatology 35, 673–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  204. Golsaz-Shirazi, F. et al. Construction of a hepatitis B virus neutralizing chimeric monoclonal antibody recognizing escape mutants of the viral surface antigen (HBsAg). Antivir. Res. 144, 153–163 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Kucinskaite-Kodze, I. et al. New broadly reactive neutralizing antibodies against hepatitis B virus surface antigen. Virus Res. 211, 209–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  206. Zhang, T. Y. et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 65, 658–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Li, D. et al. A potent human neutralizing antibody Fc-dependently reduces established HBV infections. eLife 6, e26738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Oliviero, B. et al. Hepatitis C virus-induced NK cell activation causes metzincin-mediated CD16 cleavage and impaired antibody-dependent cytotoxicity. J. Hepatol. 66, 1130–1137 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Kruse, R. L. et al. In situ liver expression of HBsAg/CD3-bispecific antibodies for HBV Immunotherapy. Mol. Ther. Methods Clin. Dev. 7, 32–41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.K.M.’s laboratory is supported by funding from the Wellcome Trust, Cancer Research UK, Medical Research Foundation and the National Institute for Health Research. A.R.B. was funded by a F. Hoffmann-La Roche–University College London joint Impact Studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala K. Maini.

Ethics declarations

Competing interests

M.K.M. receives collaborative research funding from Gilead Sciences and Immunocore and has served as a consultant or on advisory boards for Arbutus Biopharma, F. Hoffmann-La Roche, Gilead Sciences, Immunocore and Janssen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks U. Protzer and the other anonymous reviewer for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maini, M.K., Burton, A.R. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol 16, 662–675 (2019). https://doi.org/10.1038/s41575-019-0196-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0196-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing