Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases

Abstract

Sugar-sweetened beverages (SSBs) are a major source of added sugars in the diet. A robust body of evidence has linked habitual intake of SSBs with weight gain and a higher risk (compared with infrequent SSB consumption) of type 2 diabetes mellitus, cardiovascular diseases and some cancers, which makes these beverages a clear target for policy and regulatory actions. This Review provides an update on the evidence linking SSBs to obesity, cardiometabolic outcomes and related cancers, as well as methods to grade the strength of nutritional research. We discuss potential biological mechanisms by which constituent sugars can contribute to these outcomes. We also consider global trends in intake, alternative beverages (including artificially-sweetened beverages) and policy strategies targeting SSBs that have been implemented in different settings. Strong evidence from cohort studies on clinical outcomes and clinical trials assessing cardiometabolic risk factors supports an aetiological role of SSBs in relation to weight gain and cardiometabolic diseases. Many populations show high levels of SSB consumption and in low-income and middle-income countries, increased consumption patterns are associated with urbanization and economic growth. As such, more intensified policy efforts are needed to reduce intake of SSBs and the global burden of obesity and chronic diseases.

Key points

  • Sugar-sweetened beverages (SSBs) are consumed on a global scale, with intake levels above the recommended daily limits for free sugar in many high-income countries and on the rise in low-income and middle-income countries.

  • Prospective cohort studies of clinical outcomes and clinical trials assessing intermediate risk factors provide strong evidence for an aetiological relationship between SSBs and weight gain and the risk of related chronic diseases.

  • SSBs promote weight gain through adding additional liquid calories to the diet, from hyperinsulinaemia induced by the rapid absorption of glucose, and possibly from activation of the dopaminergic reward system.

  • SSBs contribute to chronic disease risk through weight gain, through development of risk factors precipitated by adverse glycaemic effects and through hepatic metabolism of excess fructose from sugars in SSBs.

  • Several policy and regulatory strategies exist across different levels of governance that can be adopted concurrently to change social norms and limit intake of SSBs among individuals and populations.

  • Given the consistency of the evidence across different populations and high intake levels globally, reducing intake of SSBs is one important step to improving overall diet quality and cardiometabolic health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global trends in sugar-sweetened beverage intake by sex.
Fig. 2: Global intake of sugar-sweetened beverages in 1990 and 2015.
Fig. 3: Biological mechanisms for sugar-sweetened beverage intake and development of obesity, cardiometabolic risk and related chronic diseases.

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article  Google Scholar 

  2. GBD 2015 Obesity Collaborators et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

    Article  Google Scholar 

  3. Dobbs R. et al. Overcoming obesity: an initial economic analysis. McKinsey Global Institute. https://www.sportanddev.org/en/article/publication/overcoming-obesity-initial-economic-analysis (2014).

  4. Hruby, A. et al. Determinants and consequences of obesity. Am. J. Public Health 106, 1656–1662 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Malik, V. S., Willett, W. C. & Hu, F. B. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 13–27 (2013).

    Article  PubMed  Google Scholar 

  6. Malik, V. S., Popkin, B. M., Bray, G. A., Despres, J. P. & Hu, F. B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121, 1356–1364 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Welsh, J. A., Sharma, A. J., Grellinger, L. & Vos, M. B. Consumption of added sugars is decreasing in the United States. Am. J. Clin. Nutr. 94, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosinger, A., Herrick, K., Gahche, J. & Park, S. Sugar-sweetened beverage consumption among U.S. adults, 2011–2014. NCHS Data Brief, no. 270 (National Center for Health Statistics, 2017).

  9. U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 dietary guidelines for Americans, 8th Edn. (U.S. Department of Health and Human Services, 2015).

  10. World Health Organization. Guideline: Sugars intake for adults and children (WHO, 2015).

  11. Singh, G. M. et al. Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: a systematic assessment of beverage intake in 187 countries. PLoS ONE 10, e0124845 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang, L. et al. Consumption of carbonated soft drinks among young adolescents aged 12 to 15 years in 53 low- and middle-income countries. Am. J. Public Health 107, 1095–1100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chatelan, A. et al. Time trends in consumption of sugar-sweetened beverages and related socioeconomic differences among adolescents in Eastern Europe: signs of a nutrition transition? Am. J. Clin. Nutr. 114, 1476–1485 (2021).

    Article  PubMed  Google Scholar 

  14. Fismen, A. S. et al. Trends in food habits and their relation to socioeconomic status among Nordic adolescents 2001/2002–2009/2010. PLoS ONE 11, e0148541 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Perrar, I., Schmitting, S., Della Corte, K. W., Buyken, A. E. & Alexy, U. Age and time trends in sugar intake among children and adolescents: results from the DONALD study. Eur. J. Nutr. 59, 1043–1054 (2020).

    Article  PubMed  Google Scholar 

  16. Dai, J., Soto, M. J., Dunn, C. G. & Bleich, S. N. Trends and patterns in sugar-sweetened beverage consumption among children and adults by race and/or ethnicity, 2003–2018. Public Health Nutr. 24, 2405–2410 (2021).

    Article  PubMed  Google Scholar 

  17. Jones, A. C., Kirkpatrick, S. I. & Hammond, D. Beverage consumption and energy intake among Canadians: analyses of 2004 and 2015 national dietary intake data. Nutr. J. 18, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gross, L. S., Li, L., Ford, E. S. & Liu, S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am. J. Clin. Nutr. 79, 774–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Vartanian, L. R., Schwartz, M. B. & Brownell, K. D. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am. J. Public Health 97, 667–675 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Te Morenga, L., Mallard, S. & Mann, J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 346, e7492 (2013).

    Article  Google Scholar 

  21. Malik, V. S., Pan, A., Willett, W. C. & Hu, F. B. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 98, 1084–1102 (2013). This meta-analysis evaluating evidence from cohort studies and trials investigating SSBs and body weight in children and adults is the most thorough synthesis to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forshee, R. A., Anderson, P. A. & Storey, M. L. Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis. Am. J. Clin. Nutr. 87, 1662–1671 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Malik, V. S., Willett, W. C. & Hu, F. B. Sugar-sweetened beverages and BMI in children and adolescents: reanalyses of a meta-analysis. Am. J. Clin. Nutr. 89, 438–439 (2009), author reply 439–440. This letter to the editor is important as it highlights key concerns in evidence synthesis related to SSBs and weight gain.

    Article  CAS  PubMed  Google Scholar 

  24. Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C. & Hu, F. B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364, 2392–2404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan, L. et al. A longitudinal analysis of sugar-sweetened beverage intake in infancy and obesity at 6 years. Pediatrics 134 (Suppl 1), 29–35 (2014).

    Article  Google Scholar 

  26. Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahabamunuge, J. et al. Association of sugar-sweetened beverage intake with maternal postpartum weight retention. Public Health Nutr. 24, 4196–4203 (2021).

    Article  PubMed  Google Scholar 

  28. Gillman, M. W. et al. Beverage intake during pregnancy and childhood adiposity. Pediatrics 140, e20170031 (2017).

    Article  PubMed  Google Scholar 

  29. Kaiser, K. A., Shikany, J. M., Keating, K. D. & Allison, D. B. Will reducing sugar-sweetened beverage consumption reduce obesity? Evidence supporting conjecture is strong, but evidence when testing effect is weak. Obes. Rev. 14, 620–633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mattes, R. D., Shikany, J. M., Kaiser, K. A. & Allison, D. B. Nutritively sweetened beverage consumption and body weight: a systematic review and meta-analysis of randomized experiments. Obes. Rev. 12, 346–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebbeling, C. B. et al. Effects of sugar-sweetened, artificially sweetened, and unsweetened beverages on cardiometabolic risk factors, body composition, and sweet taste preference: a randomized controlled trial. J. Am. Heart Assoc. 9, e015668 (2020). This trial demonstrates the impact of adiposity on glycaemic effects of SSBs in secondary analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ebbeling, C. B. et al. A randomized trial of sugar-sweetened beverages and adolescent body weight. N. Engl. J. Med. 367, 1407–1416 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Ruyter, J. C., Olthof, M. R., Seidell, J. C. & Katan, M. B. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N. Engl. J. Med. 367, 1397–1406 (2012). This study is one of the most robust conducted on this topic and provides strong evidence for a benefit of replacing SSBs with non-caloric beverages on weight gain.

    Article  PubMed  Google Scholar 

  34. Imamura, F. et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 351, h3576 (2015). This study provides a robust synthesis of evidence from cohort studies linking SSBs to higher risk of T2DM.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Malik, V. S. et al. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33, 2477–2483 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. InterAct Consortium. et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia 56, 1520–1530 (2013).

    Article  Google Scholar 

  37. Stern, D. et al. Sugar-sweetened soda consumption increases diabetes risk among Mexican women. J. Nutr. 149, 795–803 (2019).

    Article  PubMed  Google Scholar 

  38. Gardener, H., Moon, Y. P., Rundek, T., Elkind, M. S. V. & Sacco, R. L. Diet soda and sugar-sweetened soda consumption in relation to incident diabetes in the Northern Manhattan study. Curr. Dev. Nutr. 2, nzy008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huang, M. et al. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective Women’s Health Initiative observational study. Am. J. Clin. Nutr. 106, 614–622 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yin, J. et al. Intake of sugar-sweetened and low-calorie sweetened beverages and risk of cardiovascular disease: a meta-analysis and systematic review. Adv. Nutr. 12, 89–101 (2021).

    Article  PubMed  Google Scholar 

  41. Narain, A., Kwok, C. S. & Mamas, M. A. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int. J. Clin. Pract. 70, 791–805 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, C., Huang, J., Tian, Y., Yang, X. & Gu, D. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis 234, 11–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Malik, V. S. & Hu, F. B. Sugar-sweetened beverages and cardiometabolic health: an update of the evidence. Nutrients 11, 1840 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  44. Ferreira-Pego, C. et al. Frequent consumption of sugar- and artificially sweetened beverages and natural and bottled fruit juices is associated with an increased risk of metabolic syndrome in a Mediterranean population at high cardiovascular disease risk. J. Nutr. 146, 1528–1536 (2016).

    Article  PubMed  Google Scholar 

  45. Vos, M. B. et al. Added sugars and cardiovascular disease risk in children: a scientific statement from the American Heart Association. Circulation 135, e1017–e1034 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Te Morenga, L. A., Howatson, A. J., Jones, R. M. & Mann, J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am. J. Clin. Nutr. 100, 65–79 (2014).

    Article  Google Scholar 

  47. Liu, Q. et al. Important food sources of fructose-containing sugars and incident hypertension: a systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 8, e010977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stanhope, K. L. et al. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am. J. Clin. Nutr. 101, 1144–1154 (2015). This experimental study demonstrates a dose–response relationship between fructose-containing beverages and cardiometabolic risk factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raben, A. et al. Increased postprandial glycaemia, insulinemia, and lipidemia after 10 weeks’ sucrose-rich diet compared to an artificially sweetened diet: a randomised controlled trial. Food Nutr. Res. 55, 8326 (2011).

    Article  Google Scholar 

  50. Aeberli, I. et al. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am. J. Clin. Nutr. 94, 479–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Sorensen, L. B., Raben, A., Stender, S. & Astrup, A. Effect of sucrose on inflammatory markers in overweight humans. Am. J. Clin. Nutr. 82, 421–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Kuzma, J. N. et al. No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial. Am. J. Clin. Nutr. 104, 306–314 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jensen, T. et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J. Hepatol. 68, 1063–1075 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, H. et al. Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: an updated systematic review and dose-response meta-analysis. Int. J. Env. Res. Public Health 16, 2192 (2019).

    Article  CAS  Google Scholar 

  55. Asgari-Taee, F. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur. J. Nutr. 58, 1759–1769 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Chung, M. et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am. J. Clin. Nutr. 100, 833–849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiu, S. et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 68, 416–423 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ayoub-Charette, S. et al. Important food sources of fructose-containing sugars and incident gout: a systematic review and meta-analysis of prospective cohort studies. BMJ Open 9, e024171 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ebrahimpour-Koujan, S., Saneei, P., Larijani, B. & Esmaillzadeh, A. Consumption of sugar-sweetened beverages and serum uric acid concentrations: a systematic review and meta-analysis. J. Hum. Nutr. Diet. 34, 305–313 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, D. D. et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J. Nutr. 142, 916–923 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Makarem, N., Bandera, E. V., Nicholson, J. M. & Parekh, N. Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: a systematic review of longitudinal studies. Annu. Rev. Nutr. 38, 17–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, and physical activity, and the prevention of cancer: a global perspective (AICR, 2007).

  63. Llaha, F. et al. Consumption of sweet beverages and cancer risk. A systematic review and meta analysis of observational studies. Nutrients 13, 516 (2021). This study provides a current evidence synthesis of observational studies of SSBs and cancer risk.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Debras, C. et al. Total and added sugar intakes, sugar types, and cancer risk: results from the prospective NutriNet-Sante cohort. Am. J. Clin. Nutr. 112, 1267–1279 (2020).

    Article  PubMed  Google Scholar 

  65. Hodge, A. M., Bassett, J. K., Milne, R. L., English, D. R. & Giles, G. G. Consumption of sugar-sweetened and artificially sweetened soft drinks and risk of obesity-related cancers. Public Health Nutr. 21, 1618–1626 (2018).

    Article  PubMed  Google Scholar 

  66. Romanos-Nanclares, A. et al. Sugar-sweetened beverage consumption and incidence of breast cancer: the Seguimiento Universidad de Navarra (SUN) Project. Eur. J. Nutr. 58, 2875–2886 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Makarem, N. et al. Consumption of sugars, sugary foods, and sugary beverages in relation to adiposity-related cancer risk in the Framingham Offspring Cohort (1991–2013). Cancer Prev. Res. 11, 347–358 (2018).

    Article  CAS  Google Scholar 

  68. Schwingshackl, L. et al. Food groups and risk of colorectal cancer. Int. J. Cancer 142, 1748–1758 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Pacheco, L. S. et al. Sugar-sweetened beverages and colorectal cancer risk in the California Teachers Study. PLoS ONE 14, e0223638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Genkinger, J. M. et al. Coffee, tea, and sugar-sweetened carbonated soft drink intake and pancreatic cancer risk: a pooled analysis of 14 cohort studies. Cancer Epidemiol. Biomark. Prev. Oncol. 21, 305–318 (2012).

    Article  CAS  Google Scholar 

  71. Schernhammer, E. S. et al. Sugar-sweetened soft drink consumption and risk of pancreatic cancer in two prospective cohorts. Cancer Epidemiol. Biomark. Prev. Oncol. 14, 2098–2105 (2005).

    Article  CAS  Google Scholar 

  72. Navarrete-Munoz, E. M. et al. Sweet-beverage consumption and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am. J. Clin. Nutr. 104, 760–768 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Malik, V. S. et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation 139, 2113–2125 (2019). This study provides strong evidence for a dose–response relationship between intake of SSBs and total mortality and cause-specific mortality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Collin, L. J., Judd, S., Safford, M., Vaccarino, V. & Welsh, J. A. Association of sugary beverage consumption with mortality risk in US adults: a secondary analysis of data from the REGARDS Study. JAMA Netw. Open 2, e193121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Anderson, J. J. et al. The associations of sugar-sweetened, artificially sweetened and naturally sweet juices with all-cause mortality in 198,285 UK Biobank participants: a prospective cohort study. BMC Med. 18, 97 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koyratty, N. et al. Sugar-sweetened soda consumption and total and breast cancer mortality: the Western New York Exposures and Breast Cancer (WEB) Study. Cancer Epidemiol. Biomark. Prev. Oncol. 30, 945–952 (2021).

    Article  CAS  Google Scholar 

  77. Braverman-Bronstein, A. et al. Mortality attributable to sugar sweetened beverages consumption in Mexico: an update. Int. J. Obes. 44, 1341–1349 (2020).

    Article  CAS  Google Scholar 

  78. Micha, R. et al. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. J. Am. Med. Assoc. 317, 912–924 (2017).

    Article  Google Scholar 

  79. DellaValle, D. M., Roe, L. S. & Rolls, B. J. Does the consumption of caloric and non-caloric beverages with a meal affect energy intake? Appetite 44, 187–193 (2005).

    Article  PubMed  Google Scholar 

  80. Raben, A., Vasilaras, T. H., Moller, A. C. & Astrup, A. Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am. J. Clin. Nutr. 76, 721–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Tordoff, M. G. & Alleva, A. M. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. Am. J. Clin. Nutr. 51, 963–969 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Reid, M., Hammersley, R., Hill, A. J. & Skidmore, P. Long-term dietary compensation for added sugar: effects of supplementary sucrose drinks over a 4-week period. Br. J. Nutr. 97, 193–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. DiMeglio, D. P. & Mattes, R. D. Liquid versus solid carbohydrate: effects on food intake and body weight. Int. J. Obes. Relat. Metab. Disord. 24, 794–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Pan, A. & Hu, F. B. Effects of carbohydrates on satiety: differences between liquid and solid food. Curr. Opin. Clin. Nutr. Metab. Care 14, 385–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Mourao, D. M., Bressan, J., Campbell, W. W. & Mattes, R. D. Effects of food form on appetite and energy intake in lean and obese young adults. Int. J. Obes. 31, 1688–1695 (2007).

    Article  CAS  Google Scholar 

  86. Togo, J., Hu, S., Li, M., Niu, C. & Speakman, J. R. Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: liquid or solid. Mol. Metab. 27, 22–32 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cox, C. L. et al. Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. Eur. J. Clin. Nutr. 66, 201–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Sundborn, G. et al. Are liquid sugars different from solid sugar in their ability to cause metabolic syndrome? Obesity 27, 879–887 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. DiNicolantonio, J. J., O’Keefe, J. H. & Wilson, W. L. Sugar addiction: is it real? A narrative review. Br. J. Sports Med. 52, 910–913 (2018).

    Article  PubMed  Google Scholar 

  90. Avena, N. M., Rada, P. & Hoebel, B. G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 32, 20–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Olszewski, P. K., Wood, E. L., Klockars, A. & Levine, A. S. Excessive consumption of sugar: an insatiable drive for reward. Curr. Nutr. Rep. 8, 120–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Andres-Hernando, A. et al. Sugar causes obesity and metabolic syndrome in mice independently of sweet taste. Am. J. Physiol. Endocrinol. Metab. 319, E276–E290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tey, S. L., Salleh, N. B., Henry, J. & Forde, C. G. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int. J. Obes. 41, 450–457 (2017).

    Article  CAS  Google Scholar 

  94. Solomi, L., Rees, G. A. & Redfern, K. M. The acute effects of the non-nutritive sweeteners aspartame and acesulfame-K in UK diet cola on glycaemic response. Int. J. Food Sci. Nutr. 70, 894–900 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Atkinson, F. S., Foster-Powell, K. & Brand-Miller, J. C. International tables of glycemic index and glycemic load values: 2008. Diabetes care 31, 2281–2283 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ludwig, D. S. & Ebbeling, C. B. The carbohydrate-insulin model of obesity: beyond “calories in, calories out”. JAMA Intern. Med. 178, 1098–1103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ludwig, D. S. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. J. Am. Med. Assoc. 287, 2414–2423 (2002).

    Article  CAS  Google Scholar 

  98. Liu, S. et al. Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am. J. Clin. Nutr. 75, 492–498 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Bhupathiraju, S. N. et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 100, 218–232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Livesey, G. et al. Dietary glycemic index and load and the risk of type 2 diabetes: a systematic review and updated meta-analyses of prospective cohort studies. Nutrients 11, 1280 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  101. Livesey, G. & Livesey, H. Coronary heart disease and dietary carbohydrate, glycemic index, and glycemic load: dose-response meta-analyses of prospective cohort studies. Mayo Clin. Proc. Innov. Qual. Outcomes 3, 52–69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gnagnarella, P., Gandini, S., La Vecchia, C. & Maisonneuve, P. Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am. J. Clin. Nutr. 87, 1793–1801 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Lanaspa, M. A. et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat. Commun. 4, 2434 (2013).

    Article  PubMed  Google Scholar 

  104. Sun, S. Z. & Empie, M. W. Fructose metabolism in humans–what isotopic tracer studies tell us. Nutr. Metab. 9, 89 (2012).

    Article  Google Scholar 

  105. Goran, M. I., Tappy, L. & Lê, K-A. Dietary Sugars and Health (CRC Press, 2015).

  106. Teff, K. L. et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J. Clin. Endocrinol. Metab. 94, 1562–1569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stanhope, K. L. et al. Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. Am. J. Clin. Nutr. 87, 1194–1203 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Stanhope, K. L. & Havel, P. J. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am. J. Clin. Nutr. 88, 1733S–1737S (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Tappy, L. & Rosset, R. Health outcomes of a high fructose intake: the importance of physical activity. J. Physiol. 597, 3561–3571 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Andres-Hernando, A. et al. Deletion of fructokinase in the liver or in the intestine reveals differential effects on sugar-induced metabolic dysfunction. Cell Metab. 32, 117–127.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Andres-Hernando, A. et al. Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor. JCI Insight 6, e140848 (2021).

    Article  PubMed Central  Google Scholar 

  113. Choi, H. K. & Curhan, G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 336, 309–312 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Choi, H. K., Willett, W. & Curhan, G. Fructose-rich beverages and risk of gout in women. JAMA 304, 2270–2278 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Richette, P. & Bardin, T. G. Gout. Lancet 375, 318–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Nakagawa, T., Tuttle, K. R., Short, R. A. & Johnson, R. J. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat. Clin. Pract. Nephrol. 1, 80–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Azad, M. B. et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ 189, E929–E939 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nettleton, J. A. et al. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 32, 688–694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lutsey, P. L., Steffen, L. M. & Stevens, J. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 117, 754–761 (2008).

    Article  PubMed  Google Scholar 

  120. Satija, A., Yu, E., Willett, W. C. & Hu, F. B. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 6, 5–18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. de Koning, L. et al. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation 125, 1735–1741 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. de Koning, L., Malik, V. S., Rimm, E. B., Willett, W. C. & Hu, F. B. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am. J. Clin. Nutr. 93, 1321–1327 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fung, T. T. et al. Sweetened beverage consumption and risk of coronary heart disease in women. Am. J. Clin. Nutr. 89, 1037–1042 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pan, A. et al. Changes in water and beverage intake and long-term weight changes: results from three prospective cohort studies. Int. J. Obes. 37, 1378–1385 (2013).

    Article  CAS  Google Scholar 

  125. Pan, A. et al. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am. J. Clin. Nutr. 95, 1454–1460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Malik, V. S. Non-sugar sweeteners and health. BMJ 364, k5005 (2019).

    Article  PubMed  Google Scholar 

  127. Swithers, S. E. Not so sweet revenge: unanticipated consequences of high-intensity sweeteners. Behav. Anal. 38, 1–17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hunter, S. R., Reister, E. J., Cheon, E. & Mattes, R. D. Low calorie sweeteners differ in their physiological effects in humans. Nutrients 11, 2717 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  129. Higgins, K. A. & Mattes, R. D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J. Clin. Nutr. 109, 1288–1301 (2019).

    Article  PubMed  Google Scholar 

  130. Hall, K. D. et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 30, 67–77.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Johnson, R. K. et al. Low-calorie sweetened beverages and cardiometabolic health: a science advisory from the American Heart Association. Circulation 138, e126–e140 (2018).

    Article  PubMed  Google Scholar 

  132. Schulze, M. B. et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 292, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Bazzano, L. A., Li, T. Y., Joshipura, K. J. & Hu, F. B. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 31, 1311–1317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Muraki, I. et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ 347, f5001 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ravn-Haren, G. et al. Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers. Eur. J. Nutr. 52, 1875–1889 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Pepin, A., Stanhope, K. L. & Imbeault, P. Are fruit juices healthier than sugar-sweetened beverages? A review. Nutrients 11, 1006 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  137. Lanaspa, M. A. et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 287, 40732–40744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ghanim, H. et al. Orange juice or fructose intake does not induce oxidative and inflammatory response. Diabetes Care 30, 1406–1411 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. van Dam, R. M. Coffee consumption and risk of type 2 diabetes, cardiovascular diseases, and cancer. Appl. Physiol. Nutr. Metab. 33, 1269–1283 (2008).

    Article  PubMed  Google Scholar 

  140. Bhupathiraju, S. N. et al. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am. J. Clin. Nutr. 97, 155–166 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. UConn Rudd Center for Food Policy and Health. Sugar-sweetened beverage taxes and sugar intake: policy statements, endorsements, and recommendations. https://uconnruddcenter.org/wp-content/uploads/sites/2909/2020/09/SugaryDrinkTaxStatements.pdf (2017).

  142. Popkin, B. M. & Hawkes, C. Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 4, 174–186 (2016).

    Article  PubMed  Google Scholar 

  143. Muth, N. D. et al. Public policies to reduce sugary drink consumption in children and adolescents. Pediatrics 143, e20190282 (2019).

    Article  PubMed  Google Scholar 

  144. Colchero, M. A., Rivera-Dommarco, J., Popkin, B. M. & Ng, S. W. In Mexico, evidence of sustained consumer response two years after implementing a sugar-sweetened beverage tax. Health Aff. 36, 564–571 (2017).

    Article  Google Scholar 

  145. Sanchez-Romero, L. M. et al. Projected impact of Mexico’s sugar-sweetened beverage tax policy on diabetes and cardiovascular disease: a modeling study. PLoS Med. 13, e1002158 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Silver, L. D. et al. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: a before-and-after study. PLoS Med. 14, e1002283 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Teng, A. M. et al. Impact of sugar-sweetened beverage taxes on purchases and dietary intake: systematic review and meta-analysis. Obes. Rev. 20, 1187–1204 (2019). This meta-analysis provides an updated summary of effects of SSB taxes on sales and dietary intake.

    Article  PubMed  Google Scholar 

  148. Bandy, L. K., Scarborough, P., Harrington, R. A., Rayner, M. & Jebb, S. A. Reductions in sugar sales from soft drinks in the UK from 2015 to 2018. BMC Med. 18, 20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Scarborough, P. et al. Impact of the announcement and implementation of the UK soft drinks industry levy on sugar content, price, product size and number of available soft drinks in the UK, 2015-19: a controlled interrupted time series analysis. PLoS Med. 17, e1003025 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pell, D. et al. Changes in soft drinks purchased by British households associated with the UK soft drinks industry levy: controlled interrupted time series analysis. BMJ 372, n254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Muller, L. & Ruffieux, B. What makes a front-of-pack nutritional labelling system effective: the impact of key design components on food purchases. Nutrients 12, 2870 (2020).

    Article  PubMed Central  Google Scholar 

  152. Taillie, L. S., Reyes, M., Colchero, M. A., Popkin, B. & Corvalan, C. An evaluation of Chile’s Law of Food Labeling and Advertising on sugar-sweetened beverage purchases from 2015 to 2017: a before-and-after study. PLoS Med. 17, e1003015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Katz, D. L. et al. Hierarchies of Evidence Applied to Lifestyle Medicine (HEALM): introduction of a strength-of-evidence approach based on a methodological systematic review. BMC Med. Res. Methodol. 19, 178 (2019). This study provides a thorough summary of 15 evidence grading tools in use in nutrition research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hernan, M. A. & Robins, J. M. Estimating causal effects from epidemiological data. J. Epidemiol. Commun. Health 60, 578–586 (2006).

    Article  Google Scholar 

  155. Schwingshackl, L. et al. Perspective: NutriGrade: a scoring system to assess and judge the meta-evidence of randomized controlled trials and cohort studies in nutrition research. Adv. Nutr. 7, 994–1004 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Schlesinger, S. et al. Food groups and risk of overweight, obesity, and weight gain: a systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. 10, 205–218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Malik, V. S. & Hu, F. B. Sweeteners and risk of obesity and type 2 diabetes: the role of sugar-sweetened beverages. Curr. Diabetes Rep. 12, 195–203 (2012).

    Article  CAS  Google Scholar 

  158. Hu, F. B. Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev. 14, 606–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Vasanti S. Malik or Frank B. Hu.

Ethics declarations

Competing interests

V.S.M. is on a pro bono retainer for expert support for litigation related to sugar-sweetened beverages and has served as a consultant for the City of San Francisco for a case related to health warning labels on soda. There are no other financial or personal conflicts of interest to disclose that are related to the content of this paper. F.B.H. declares no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks K. Backholer, R. Johnson, L. Moreno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global dietary database: https://www.globaldietarydatabase.org/data-download

Glossary

Sugar-sweetened beverages

(SSBs). Beverages that contain added sugar, including carbonated and non-carbonated soft drinks, fruit drinks, and sports and energy drinks that are typically low in nutritional quality.

Artificially-sweetened beverages

(ASBs). Beverages that are flavoured with low-calorie sweeteners (aspartame, sucralose, acesulfame-potassium, saccharine or stevia) and contain few to no calories but retain a sweet taste.

Non-alcoholic fatty liver disease

(NAFLD). This spectrum of pathological disorders includes simple hepatic steatosis, non-alcoholic steatohepatitis, fibrosis and cirrhosis and arises without alcohol consumption.

Gout

A common form of inflammatory arthritis arising from deposition of uric acid in articular cartilage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, V.S., Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol 18, 205–218 (2022). https://doi.org/10.1038/s41574-021-00627-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00627-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing