Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fragility of time-reversal symmetry protected topological phases

Abstract

The second law of thermodynamics points to the existence of an ‘arrow of time’, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many interesting phenomena, most notably topological insulators1,2,3,4 and the Haldane phase of quantum magnets5,6. Here, we demonstrate that such TRS-protected effects are fundamentally unstable against coupling to an environment. Irrespective of the microscopic symmetries, interactions between a quantum system and its surroundings facilitate processes that would be forbidden by TRS in an isolated system. This leads not only to entanglement entropy production and the emergence of macroscopic irreversibility7,8,9, but also to the demise of TRS-protected phenomena, including those associated with certain symmetry-protected topological phases. Our results highlight the enigmatic nature of TRS in quantum mechanics and elucidate potential challenges in utilizing topological systems for quantum technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decoherence mechanisms for topological bound states coupled to an environment.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study.

References

  1. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  2. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  3. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  4. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  Google Scholar 

  5. Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  6. Pollmann, F., Turner, A. M., Berg, E. & Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81, 064439 (2010).

    Article  ADS  Google Scholar 

  7. von Neumann, J. Proof of the ergodic theorem and the H-theorem in quantum mechanics. Z. Phys. 57, 30–70 (1929).

    Article  ADS  Google Scholar 

  8. Goldstein, S., Lebowitz, J. L., Tumulka, R. & Zanghì, N. Long-time behavior of macroscopic quantum systems. Eur. Phys. J. H 35, 173–200 (2010).

    Article  Google Scholar 

  9. Srednicki, M. The approach to thermal equilibrium in quantized chaotic systems. J. Phys. A 32, 1163–1175 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order. Phys. Rev. B 82, 155138 (2010).

    Article  ADS  Google Scholar 

  11. Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).

    Article  ADS  Google Scholar 

  12. Kitaev, A. Y. Unpaired majorana fermions in quantum wires. Phys. Uspekhi 44, 131–136 (2001).

    Article  ADS  Google Scholar 

  13. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  14. Das Sarma, S., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).

    Article  ADS  Google Scholar 

  15. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Preprint at https://arxiv.org/pdf/1912.10048.pdf (2019).

  16. Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nat. Phys. 7, 971–997 (2011).

    Article  Google Scholar 

  17. Bardyn, C.-E. et al. Topology by dissipation. N. J. Phys. 15, 085001 (2013).

    Article  Google Scholar 

  18. Lieu, S., McGinley, M. & Cooper, N. R. Tenfold way for quadratic Lindbladians. Phys. Rev. Lett. 124, 040401 (2020).

    Article  ADS  Google Scholar 

  19. Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  20. Buča, B. & Prosen, T. A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains. N. J. Phys. 14, 073007 (2012).

    Article  MathSciNet  Google Scholar 

  21. Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012).

    Article  ADS  Google Scholar 

  22. Yang, J. & Liu, Z.-X. Irreducible projective representations and their physical applications. J. Phys. A 51, 025207 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. Pollmann, F. & Turner, A. M. Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86, 125441 (2012).

    Article  ADS  Google Scholar 

  24. McGinley, M. & Cooper, N. R. Classification of topological insulators and superconductors out of equilibrium. Phys. Rev. B 99, 075148 (2019).

    Article  ADS  Google Scholar 

  25. McGinley, M. & Cooper, N. R. Interacting symmetry-protected topological phases out of equilibrium. Phys. Rev. Res. 1, 033204 (2019).

    Article  Google Scholar 

  26. Goldstein, G. & Chamon, C. Decay rates for topological memories encoded with Majorana fermions. Phys. Rev. B 84, 205109 (2011).

    Article  ADS  Google Scholar 

  27. Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).

    Article  ADS  Google Scholar 

  28. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  ADS  Google Scholar 

  29. Schmidt, T. L., Rachel, S., von Oppen, F. & Glazman, L. I. Inelastic electron backscattering in a generic helical edge channel. Phys. Rev. Lett. 108, 156402 (2012).

    Article  ADS  Google Scholar 

  30. Budich, J. C., Dolcini, F., Recher, P. & Trauzettel, B. Phonon-induced backscattering in helical edge states. Phys. Rev. Lett. 108, 086602 (2012).

    Article  ADS  Google Scholar 

  31. Väyrynen, J. I., Pikulin, D. I. & Alicea, J. Noise-induced backscattering in a quantum spin Hall edge. Phys. Rev. Lett. 121, 106601 (2018).

    Article  ADS  Google Scholar 

  32. Van Kampen, N. G. A cumulant expansion for stochastic linear differential equations. I. Physica 74, 215–238 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  33. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981).

    Article  ADS  Google Scholar 

  34. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  35. Oreg, Y. & von Oppen, F. Majorana zero modes in networks of Cooper-pair boxes: topologically ordered states and topological quantum computation. Annu. Rev. Condens. Matter Phys. 11, 397–420 (2020).

    Article  Google Scholar 

  36. Wong, C. L. M. & Law, K. T. Majorana Kramers doublets in \({d}_{{x}^{2}-{y}^{2}}\)-wave superconductors with Rashba spin–orbit coupling. Phys. Rev. B 86, 184516 (2012).

    Article  ADS  Google Scholar 

  37. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  38. De Roeck, W. & Huveneers, F. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an EPSRC studentship and grants EP/P034616/1 and EP/P009565/1, and by an Investigator Award of the Simons Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the formulation of the study, interpretation of the results and writing of the manuscript. M.M. developed and performed the calculations.

Corresponding author

Correspondence to Max McGinley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Zhong Wang and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGinley, M., Cooper, N.R. Fragility of time-reversal symmetry protected topological phases. Nat. Phys. 16, 1181–1183 (2020). https://doi.org/10.1038/s41567-020-0956-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0956-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing