Abstract
The Audible Universe project aims to create dialogue between two scientific domains investigating two distinct research objects: stars and sound. It has been instantiated within a collaborative workshop that began to mutually acculturate the two communities, by sharing and transmitting respective knowledge, skills and practices. One main outcome of this exchange was a global view on the astronomical data sonification paradigm for observing the diversity of tools, uses and users (including visually impaired people), but also the current limitations and potential methods of improvement. From this viewpoint, here we present basic elements gathered and contextualized by sound experts in their respective fields (sound perception/cognition, sound design, psychoacoustics, experimental psychology), to anchor sonification for astronomy in a more well informed, methodological and creative process.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Harrison, C., Zanella, A., Bonne, N., Meredith, K. & Misdariis, N. Audible Universe. Nat. Astron. 6, 22–23 (2021).
Zanella, A. et al. Sonification and sound design for astronomy research, education and public engagement. Nat. Astron. https://doi.org/10.1038/s41550-022-01721-z (2022).
Walker, B. N. et al. Spearcons (speech-based earcons) improve navigation performance in advanced auditory menus. Hum. Factors 55, 157–182 (2013).
Susini, P., Houix, O. & Misdariis, N. Sound design: an applied, experimental framework to study the perception of everyday sounds. N. Soundtrack 4, 103–121 (2014).
Jekosch, U. in Communication Acoustics 193–221 (Springer, 2005).
Robare, P. Sound in Product Design. Doctoral dissertation, master’s thesis, Carnegie Mellon Univ. School of Design (2009).
Noel-Storr, J. & Willebrands, M. Accessibility in astronomy for the visually impaired. Nat. Astron. https://doi.org/10.1038/s41550-022-01691-2 (2022).
Barrass, S. Physical sonification dataforms. In Proc. 17th International Conference on Auditory Display (ICAD-2011) (International Community for Auditory Display, 2011).
Bregman, A. S. Auditory Scene Analysis: the Perceptual Organization of Sound (MIT Press, 1990).
Truax, B. Acoustic Communication (Ablex, 1984).
Sueur, J. & Farina, A. Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8, 493–502 (2015).
Plack, C. The Sense of Hearing (Erlbaum, 2005).
Gaver, W. W. What in the world do we hear? An ecological approach to auditory event perception. Ecol. Psychol. 5, 1–29 (1993).
Özcan, E. & van Egmond, R. Basic semantics of product sounds. Int. J. Des. 6, 41–54 (2012).
Özcan, E., Van Egmond, R. & Jacobs, J. J. Product sounds: basic concepts and categories. Int. J. Des. 8, 97–111 (2014).
Grassi, M., Pastore, M. & Lemaitre, G. Looking at the world with your ears: how do we get the size of an object from its sound? Acta Psychol. 143, 96–104 (2013).
Özcan, E. The Harley effect: internal and external factors that facilitate positive experiences with product sounds. J. Sonic Stud. 6, a07 (2014).
Delle Monache, S., Misdariis, N. & Özcan, E. Semantic models of sound-driven design: designing with listening in mind. Des. Stud. 83, 101134 (2022).
Bar, M. Visual objects in context. Nat. Rev. Neurosci. 5, 617–629 (2004).
De Graef, P., Christiaens, D. & d’Ydewalle, G. Perceptual effects of scene context on object identification. Psychol. Res. 52, 317–329 (1990).
Leder, H., Belke, B., Oeberst, A. & Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 95, 489–508 (2004).
Grassi, M. Do we hear size or sound? Balls dropped on plates. Percept. Psychophys. 67, 274–284 (2005).
Clément, S., Demany, L. & Semal, C. Memory for pitch versus memory for loudness. J. Acoust. Soc. Am. 106, 2805–2811 (1999).
Pitteri, M., Marchetti, M., Priftis, K. & Grassi, M. Naturally together: pitch-height and brightness as coupled factors for eliciting the SMARC effect in non-musicians. Psychol. Res. 81, 243–254 (2017).
Susini, P. Le Design Sonore: un Cadre Experimental et Applicatif pour Explorer la Perception Sonore. Dossier d’Habilitation à Diriger des Recherches, Aix-Marseille II (2011).
Selfridge, R. & Pauletto, S. Sound design ideation: comparing four sound designers’ approaches. In Proc. Sound and Music Computing Conference (eds Michon, R. et al.) 92–99 (SMC Network, 2022).
Selfridge, R. & Pauletto, S. Investigating the sound design process: two case studies from radio and film production. In DRS2022: Bilbao (eds Lockton, D. et al.) (Design Research Society, 2022); https://doi.org/10.21606/drs.2022.772
Zattra, L., Misdariis, N., Pecquet, F., Donin, N. & Fierro, D. Practices and practitioners: outcomes from the APDS project. In Proc. Sound Design Days (ICRAM, 2019); https://medias.ircam.fr/x73cb37
Delle Monache, S., Misdariis, N. and Özcan, E. Conceptualising sound-driven design: an exploratory discourse analysis. In Proc. Creativity and Cognition Conference 42 (Association for Computing Machinery, 2021); https://doi.org/10.1145/3450741.3465258
Kramer, G. et al. Sonification Report: Status of the Field and Research Agenda (Faculty Publications, Department of Psychology, Univ. Nebraska–Lincoln, 2010).
Schaffert, N., Janzen, T. B., Mattes, K. & Thaut, M. H. A review on the relationship between sound and movement in sports and rehabilitation. Front. Psychol. 10, 244 (2019).
Bevilacqua, F. et al. Sensori-motor learning with movement sonification: perspectives from recent interdisciplinary studies. Front. Neurosci. 10, 385 (2016).
Walus, B. P., Pauletto, S. & Mason-Jones, A. Sonification and music as support to the communication of alcohol-related health risks to young people. J. Multimodal User Interfaces 10, 235–246 (2016).
Barrass, S. Diagnosing blood pressure with Acoustic Sonification singing bowls. Int. J. Hum. Comput. Stud. 85, 68–71 (2016).
Polli, A. Heat and the heartbeat of the city: sonifying data describing climate change. Leonardo Music J. 16, 44–45 (2006).
Sawe, N., Chafe, C. & Treviño, J. Using data sonification to overcome science literacy, numeracy, and visualization barriers in science communication. Front. Commun. 5, 46 (2020).
Tardieu, J., Misdariis, N., Langlois, S., Gaillard, P. & Lemercier, C. Sonification of in-vehicle interface reduces gaze movements under dual-task condition. Appl. Ergon. 50, 41–49 (2015).
Williamson, J., Murray-Smith, R. & Hughes, S. Shoogle: excitatory multimodal interaction on mobile devices. In Proc. SIGCHI Conference on Human Factors in Computing Systems 121–124 (Association for Computing Machinery, 2007); https://doi.org/10.1145/1240624.1240642
Ahmetovic, D. et al. Sonification of rotation instructions to support navigation of people with visual impairment. In Proc. IEEE International Conference on Pervasive Computing and Communications 1–10 (IEEE, 2019).
Graham, R. Use of auditory icons as emergency warnings: evaluation within a vehicle collision avoidance application. Ergonomics 42, 1233–1248 (1999).
McNeer, R. R., Horn, D. B., Bennett, C. L., Edworthy, J. R. & Dudaryk, R. Auditory icon alarms are more accurately and quickly identified than current standard melodic alarms in a simulated clinical setting. Anesthesiology 129, 58–66 (2018).
Danna, J. et al. The effect of real-time auditory feedback on learning new characters. Hum. Mov. Sci. 43, 216–228 (2015).
Rovithis, E. & Floros, A. AstroSonic: an educational audio gamification approach. In DCAC Conference, Interdisciplinary Creativity in Arts and Technology (eds Panagopoulos, M. et al.) 116–123 (Ionian University Publications, 2018).
Bardelli, S., Ferretti, C., Ludovico, L. A., Presti, G. & Rinaldi, M. A sonification of the zCOSMOS galaxy dataset. In Culture and Computing. Interactive Cultural Heritage and Arts. HCII 2021 (ed. Rauterberg, M.) 171–188 Lecture Notes in Computer Science Vol. 12794 (Springer, 2021).
Alexander, R. L. et al. Audification as a diagnostic tool for exploratory heliospheric data analysis. In Proc. 17th International Conference on Auditory Display (ICAD-2011) (International Community for Auditory Display, 2011); https://smartech.gatech.edu/handle/1853/51574
Cooke, J., Díaz-Merced, W., Foran, G., Hannam, J. & Garcia, B. Exploring data sonification to enable, enhance, and accelerate the analysis of big, noisy, and multi-dimensional data: workshop 9. Proc. Int. Astron. Union 14, 251–256 (2017).
Riber, A. G. Planethesizer: Approaching Exoplanet Sonification (Georgia Institute of Technology, 2018).
Barrass, S. Digital fabrication of acoustic sonifications. J. Audio Eng. Soc. 60, 709–715 (2012).
Barrass, S. & Best, V. Stream-based sonification diagrams. In Proc. 14th International Conference on Auditory Display (International Community for Auditory Display, 2008); https://smartech.gatech.edu/handle/1853/49945
Barrass, S. Acoustic sonification of blood pressure in the form of a singing bowl. In Proc. Workshop on Sonification in Health and Environmental Data https://doi.org/10.13140/2.1.3365.5041 (2014).
Gaver, W. W. How do we hear in the world? Explorations in ecological acoustics. Ecol. Psychol. 5, 285–313 (1993).
Barrass, S. & Zehner, B. Responsive sonification of well-logs. In Proc. International Conference on Auditory Display 72–80 (International Community for Auditory Display, 2000).
Thaut, M. H. Musical echoic memory training (MEM). In Handbook of Neurologic Music Therapy (eds Thaut, M. H. & Hoemberg, V.) 311–313 (Oxford Univ. Press, 2014).
Alexander, R. L., O’Modhrain, S., Roberts, D. A., Gilbert, J. A. & Zurbuchen, T. H. The bird’s ear view of space physics: audification as a tool for the spectral analysis of time series data. J. Geophys. Res. Space Phys. 119, 5259–5271 (2014).
Sturm, B. L. Ocean buoy spectral data sonification: research update. In Proc. International Conference on Auditory Display (International Community for Auditory Display, 2003). https://smartech.gatech.edu/handle/1853/50477
Sturm, B. L. Pulse of an ocean: sonification of ocean buoy data. Leonardo 38, 143–149 (2005).
Newbold, J. W., Hunt, A. & Brereton, J. Chemical spectral analysis through sonification. In Proc. 21th International Conference on Auditory Display (ICAD–2015) (International Community for Auditory Display, 2015); https://smartech.gatech.edu/handle/1853/54197
Hermann, T. in The Sonification Handbook (eds Hermann, T. et al.) 399–425 (Logos, 2011).
Barrass, S. Sonic information design. J. Sonic Stud. https://www.researchcatalogue.net/view/514603/514604 (2018).
Lenzi, S., Terenghi, G. & Moreno-Fernandez-de-Leceta, A. A design-driven sonification process for supporting expert users in real-time anomaly detection: towards applied guidelines. EAI Endorsed Trans. Creative Technol. 7, e4 (2020).
Lenzi, S. & Ciuccarelli, P. Data Sonification Canvas (Data Sonification Archive, 2022); https://sonification.design/assets/resource/Data_sonification_canvas.pdf
Allen, E. J. & Oxenham, A. J. Symmetric interactions and interference between pitch and timbre. J. Acoust. Soc. Am. 135, 1371–1379 (2014).
Fechner, G. T. Elements of Psychophysics (Holt, Reinehart and Winston, 1966).
Stevens, S. S. The measurement of loudness. J. Acoust. Soc. Am. 27, 815–829 (1955).
Grey, J. M. Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc. Am. 61, 1270–1277 (1977).
McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G. & Krimphoff, J. Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychol. Res. 58, 177–192 (1995).
Misdariis, N. et al. Environmental sound perception: metadescription and modeling based on independent primary studies. EURASIP J. Audio Speech Music Process. 2010, 362013 (2010).
Guastavino, C. in Sensory Experiences: Exploring Meaning and the Senses (eds Dubois, D. et al.) 139–167 (Benjamins, 2021).
Susini, P., Lemaitre, G. & McAdams, S. in Measurement With Persons 241–268 (Psychology, 2013).
Giordano, B., Susini, P. & Bresin, R. in Sonic Interaction Design Book (eds Franinović, K. & Serafin, S.) (MIT Press, 2013).
Edwards, A. D. Auditory display in assistive technology. Sonification Handb. 1, 431–453 (2011).
Diaz Merced, W. L. Sound for the Exploration of Space Physics Data. Doctoral dissertation, Univ. Glasgow (2013).
Gibney, E. How one astronomer hears the Universe. Nature 577, 155–156 (2020).
Acknowledgements
We are grateful to the Lorentz Center for supporting the organization of the Audible Universe workshop in September 2021 and to the workshop participants for valuable and insightful discussions.
Author information
Authors and Affiliations
Contributions
N.M. led the initiation, structuring and editing of this Perspective, the management of co-authors’ contributions and the writing of Context of this Perspective, Introduction and Conclusion. E.Ö. and M.G. led the writing of From sound perception to sound experience, S.P. and S.B. led the writing of From sound design to sonic information design and R.B. and P.S. led the writing of From psychoacoustics to sonification evaluation. All co-authors participated in discussions about the content, and provided comments on the initial manuscript and feedback for the revised versions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Misdariis, N., Özcan, E., Grassi, M. et al. Sound experts’ perspectives on astronomy sonification projects. Nat Astron 6, 1249–1255 (2022). https://doi.org/10.1038/s41550-022-01821-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01821-w