Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tests for the existence of black holes through gravitational wave echoes

Abstract

The existence of black holes and spacetime singularities is a fundamental issue in science. Despite this, observations supporting their existence are scarce, and their interpretation is unclear. In this Perspective we outline the case for black holes that has been made over the past few decades, and provide an overview of how well observations adjust to this paradigm. Unsurprisingly, we conclude that observational proof for black holes is, by definition, impossible to obtain. However, just like Popper’s black swan, alternatives can be ruled out or confirmed to exist with a single observation. These observations are within reach. In the coming years and decades, we will enter an era of precision gravitational-wave physics with more sensitive detectors. Just as accelerators have required larger and larger energies to probe smaller and smaller scales, more sensitive gravitational-wave detectors will probe regions closer and closer to the horizon, potentially reaching Planck scales and beyond. What may be there, lurking?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic classification of dark compact objects.
Fig. 2: Ringdown waveforms from black holes (black line) and ClePhOs (red line).

Similar content being viewed by others

References

  1. Mazur, P. O. & Mottola, E. Gravitational vacuum condensate stars. Proc. Natl Acad. Sci. USA 101, 9545–9550 (2004).

    Article  ADS  Google Scholar 

  2. Mathur, S. D. The fuzzball proposal for black holes: An elementary review. Fortsch. Phys. 53, 793–827 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Mathur, S. D. Fuzzballs and the information paradox: a summary and conjectures. Preprint at https://arxiv.org/abs/0810.4525 (2008).

  4. Unruh, W. G. & Wald, R. M. Information loss. Preprint at https://arxiv.org/abs/1703.02140 (2017).

  5. Broderick, A. E., Johannsen, T., Loeb, A. & Psaltis, D. Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. Astrophys. J. 784, 7 (2014).

    Article  ADS  Google Scholar 

  6. Goddi, C. et al. BlackHoleCam: Fundamental physics of the Galactic center. Int. J. Mod. Phys. D 26, 1730001 (2017).

    Article  ADS  Google Scholar 

  7. Ferrari, V. & Mashhoon, B. New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295–304 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  8. Cardoso, V., Miranda, A. S., Berti, E., Witek, H. & Zanchin, V. T. Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 79, 064016 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  9. Berti, E., Cardoso, V. & Starinets, A. O. Quasinormal modes of black holes and black branes. Class. Quant. Grav 26, 163001 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cardoso, V., Franzin, E. & Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116, 171101 (2016).

    Article  ADS  Google Scholar 

  11. Cardoso, V., Hopper, S., Macedo, C. F. B., Palenzuela, C. & Pani, P. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys. Rev. D 94, 084031 (2016).

    Article  ADS  Google Scholar 

  12. Buchdahl, H. A. General relativistic fluid spheres. Phys. Rev 116, 1027–1034 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kaup, D. J. & Klein-Gordon, G. Phys. Rev 172, 1331–1342 (1968).

    Article  ADS  Google Scholar 

  14. Ruffini, R. & Bonazzola, S. Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767–1783 (1969).

    Article  ADS  Google Scholar 

  15. Seidel, E. & Suen, W. M. Oscillating soliton stars. Phys. Rev. Lett. 66, 1659–1662 (1991).

    Article  ADS  Google Scholar 

  16. Brito, R., Cardoso, V. & Okawa, H. Accretion of dark matter by stars. Phys. Rev. Lett. 115, 111301 (2015).

    Article  ADS  Google Scholar 

  17. Liebling, S. L. & Palenzuela, C. Dynamical boson stars. Living Rev. Rel 15, 6 (2012).

    Article  MATH  Google Scholar 

  18. Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).

    Article  ADS  Google Scholar 

  19. Damour, T. & Solodukhin, S. N. Wormholes as black hole foils. Phys. Rev. D 76, 024016 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Chowdhury, B. D. & Mathur, S. D. Radiation from the non-extremal fuzzball. Class. Quant. Grav 25, 135005 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mottola, E. & Vaulin, R. Macroscopic effects of the quantum trace anomaly. Phys. Rev. D 74, 064004 (2006).

    Article  ADS  Google Scholar 

  22. Barcelo, C., Liberati, S., Sonego, S. & Visser, M. Black stars, not holes. Sci. Am. 301, 38–45 (2009).

    Article  Google Scholar 

  23. Barcelo, C., Liberati, S., Sonego, S. & Visser, M. Fate of gravitational collapse in semiclassical gravity. Phys. Rev. D 77, 044032 (2008).

    Article  ADS  Google Scholar 

  24. Gimon, E. G. & Horava, P. Astrophysical violations of the Kerr bound as a possible signature of string theory. Phys. Lett. B 672, 299–302 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  25. Brustein, R. & Medved, A. J. M. Black holes as collapsed polymers. Fortsch. Phys 65, 0114 (2017).

    MathSciNet  MATH  Google Scholar 

  26. Brustein, R., Medved, A. J. M. & Yagi, K. Discovering the interior of black holes. Preprint at https://arxiv.org/abs/1701.07444 (2017).

  27. Holdom, B. & Ren, J. Not quite a black hole. Phys. Rev. D 95, 084034 (2017).

    Article  ADS  Google Scholar 

  28. Seidel, E. & Suen, W. M. Formation of solitonic stars through gravitational cooling. Phys. Rev. Lett. 72, 2516–2519 (1994).

    Article  ADS  Google Scholar 

  29. Brito, R., Cardoso, V., Macedo, C. F. B., Okawa, H. & Palenzuela, C. Interaction between bosonic dark matter and stars. Phys. Rev. D 93, 044045 (2016).

    Article  ADS  Google Scholar 

  30. Keir, J. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav 33, 135009 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Cardoso, V., Crispino, L. C. B., Macedo, C. F. B., Okawa, H. & Pani, P. Light rings as observational evidence for event horizons: Long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D 90, 044069 (2014).

    Article  ADS  Google Scholar 

  32. Friedman, J. L. Generic instability of rotating relativistic stars. Commun. Math. Phys. 62, 247–278 (1978).

    Article  ADS  MATH  Google Scholar 

  33. Moschidis, G. A proof of Friedman’s ergosphere instability for scalar waves. Preprint at https://arxiv.org/abs/1608.02035 (2016).

  34. Cardoso, V., Pani, P., Cadoni, M. & Cavaglia, M. Ergoregion instability of ultracompact astrophysical objects. Phys. Rev. D 77, 124044 (2008).

    Article  ADS  Google Scholar 

  35. Maggio, E., Pani, P. & Ferrari, V. Exotic compact objects and how to quench their ergoregion instability. Preprint at https://arxiv.org/abs/1703.03696 (2017).

  36. Fritz, J. Blow-up for quasi-linear wave equations in three space dimensions. Commun. Pure Applied Math 34, 29–51 (1981).

    Article  MATH  Google Scholar 

  37. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  38. Abbott, B. P. et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016).

    Article  ADS  Google Scholar 

  39. Yunes, N. & Siemens, X. Gravitational-wave tests of general relativity with ground-based detectors and pulsar timing-arrays. Living Rev. Rel 16, 1–124 (2013).

    Article  Google Scholar 

  40. Barausse, E., Cardoso, V. & Pani, P. Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 89, 104059 (2014).

    Article  ADS  Google Scholar 

  41. Berti, E. et al. Testing general relativity with present and future astrophysical observations. Class. Quant. Grav 32, 243001 (2015).

    Article  ADS  Google Scholar 

  42. Yunes, N., Yagi, K. & Pretorius, F. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys. Rev. D 94, 084002 (2016).

    Article  ADS  Google Scholar 

  43. Maselli, A. et al. Probing Planckian corrections at the horizon scale with LISA binaries. Preprint at https://arxiv.org/abs/1703.10612 (2017).

  44. Abbott, B. P. et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016).

    Article  ADS  Google Scholar 

  45. Buonanno, A., Cook, G. B. & Pretorius, F. Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  46. Berti, E. et al. Inspiral, merger and ringdown of unequal mass black hole binaries: A multipolar analysis. Phys. Rev. D 76, 064034 (2007).

    Article  ADS  Google Scholar 

  47. Sperhake, U., Berti, E. & Cardoso, V. Numerical simulations of black-hole binaries and gravitational wave emission. C. R. Phys. 14, 306–317 (2013).

    Article  ADS  Google Scholar 

  48. Blanchet, L. Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev. Rel 17, 2 (2014).

    Article  MATH  Google Scholar 

  49. Price, R. H. & Khanna, G. Gravitational wave sources: reflections and echoes. Preprint at https://arxiv.org/abs/1702.04833 (2017).

  50. Nakano, H., Sago, N., Tagoshi, H. & Tanaka, T. Black hole ringdown echoes and howls. Prog. Theor. Exp. Phys. 2017, 071E01 (2017).

  51. Abbott, B. P. et al. Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Phys. Rev. D 80, 062001 (2009).

    Article  ADS  Google Scholar 

  52. Berti, E., Sesana, A., Barausse, E., Cardoso, V. & Belczynski, K. Spectroscopy of Kerr black holes with Earth- and space-based interferometers. Phys. Rev. Lett. 117, 101102 (2016).

    Article  ADS  Google Scholar 

  53. Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  54. Punturo, M. et al. The Einstein telescope: A third-generation gravitational wave observatory. Class. Quant. Grav 27, 194002 (2010).

    Article  ADS  Google Scholar 

  55. LIGO Scientific Collaboration. LIGO Instrument Science White Paper (LIGO, 2015); https://dcc.ligo.org/public/0120/T1500290/002/T1500290.pdf

  56. Abedi, J., Dykaar, H. & Afshordi, N. Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons. Preprint at https://arxiv.org/abs/1612.00266 (2016).

  57. Ashton, G. et al. Comments on: ‘Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons’. Preprint at https://arxiv.org/abs/1612.05625 (2016).

  58. Abedi, J., Dykaar, H. & Afshordi, N. Echoes from the abyss: The holiday edition! Preprint at https://arxiv.org/abs/1701.03485 (2017).

  59. Mark, Z., Zimmerman, A., Du, S. M. & Chen, Y. A recipe for echoes from exotic compact objects. Preprint at https://arxiv.org/abs/1706.06155 (2017).

  60. Mottola, E. Scalar gravitational waves in the effective theory of gravity. J. High Energy Phys. 2017, 43 (2017).

  61. Pani, P., Berti, E., Cardoso, V., Chen, Y. & Norte, R. Gravitational-wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar. Phys. Rev. D 81, 084011 (2010).

    Google Scholar 

  62. Macedo, C. F. B., Pani, P., Cardoso, V. & Crispino, L. C. B. Into the lair: Gravitational-wave signatures of dark matter. Astrophys. J. 774, 48 (2013).

    Article  ADS  Google Scholar 

  63. Macedo, C. F. B., Pani, P., Cardoso, V. & Crispino, L. C. B. Astrophysical signatures of boson stars: Quasinormal modes and inspiral resonances. Phys. Rev. D 88, 064046 (2013).

    Article  ADS  Google Scholar 

  64. Berti, E., Cardoso, V. & Will, C. M. On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D 73, 064030 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  65. Berti, E. & Cardoso, V. Supermassive black holes or boson stars? Hair counting with gravitational wave detectors. Int. J. Mod. Phys. D 15, 2209–2216 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Chirenti, C. & Rezzolla, L. Did GW150914 produce a rotating gravastar? Phys. Rev. D 94, 084016 (2016).

    Article  ADS  Google Scholar 

  67. Konoplya, R. A. & Zhidenko, A. Wormholes versus black holes: Quasinormal ringing at early and late times. J. Cosmol. Astropart. Phys. 1612, 043 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  68. Nandi, K. K., Izmailov, R. N., Yanbekov, A. A. & Shayakhmetov, A. A. Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole? Phys. Rev. D 95, 104011 (2017).

    Article  ADS  Google Scholar 

  69. Barcelo, C., Carballo-Rubio, R. & Garay, L. J. Gravitational wave echoes from macroscopic quantum gravity effects. J. High Energ. Phys. 2017, 54 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  70. Brustein, R., Medved, A. J. M. & Yagi, K. When black holes collide: Probing the interior composition by the spectrum of ringdown modes and emitted gravitational waves. Preprint at https://arxiv.org/abs/1704.05789 (2017).

  71. Bezares, M., Palenzuela, C. & Bona, C. Final fate of compact boson star mergers. Phys. Rev. D 95, 124005 (2017).

    Article  ADS  Google Scholar 

  72. Cardoso, V., Franzin, E., Maselli, A., Pani, P. & Raposo, G. Testing strong-field gravity with tidal Love numbers. Phys. Rev. D 95, 084014 (2017).

    Article  ADS  Google Scholar 

  73. Flanagan, E. E. & Hinderer, T. Constraining neutron star tidal Love numbers with gravitational wave detectors. Phys. Rev. D 77, 021502 (2008).

    Article  ADS  Google Scholar 

  74. Binnington, T. & Poisson, E. Relativistic theory of tidal Love numbers. Phys. Rev. D 80, 084018 (2009).

    Article  ADS  Google Scholar 

  75. Damour, T. & Nagar, A. Relativistic tidal properties of neutron stars. Phys. Rev. D 80, 084035 (2009).

    Article  ADS  Google Scholar 

  76. Poisson, E. Tidal deformation of a slowly rotating black hole. Phys. Rev. D 91, 044004 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  77. Pani, P., Gualtieri, L., Maselli, A. & Ferrari, V. Tidal deformations of a spinning compact object. Phys. Rev. D 92, 024010 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  78. Wade, M., Creighton, J. D. E., Ochsner, E. & Nielsen, A. B. Advanced LIGO’s ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections. Phys. Rev. D 88, 083002 (2013).

    Article  ADS  Google Scholar 

  79. Sennett, N., Hinderer, T., Steinhoff, J., Buonanno, A. & Ossokine, S. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems. Phys. Rev. D 96, 024002 (2017).

    Article  ADS  Google Scholar 

  80. Krishnendu, N. V., Arun, K. G. & Mishra, C. K. Testing the binary black hole nature of a compact binary coalescence. Preprint at https://arxiv.org/abs/1701.06318 (2017).

  81. Birks, J. B. Rutherford at Manchester. (Benjamon, New York, 1963).

    Google Scholar 

Download references

Acknowledgements

V.C. acknowledges financial support provided under the European Union’s H2020 ERC Consolidator Grant ‘Matter and strong-field gravity: New frontiers in Einstein’s theory’, grant agreement No. MaGRaTh–646597. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and the Province of Ontario through the Ministry of Economic Development Innovation. This article is based on work from COST Action CA16104 ‘GWverse’ and MP1304 ‘NewCompstar’, supported by COST (European Cooperation in Science and Technology). This work was partially supported by FCT-Portugal through project IF/00293/2013, and by the H2020-MSCA-RISE-2015, grant No. StronGrHEP-690904.

Author information

Authors and Affiliations

Authors

Contributions

V.C. and P.P. contributed equally to the writing and calculations in this work.

Corresponding author

Correspondence to Vitor Cardoso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, V., Pani, P. Tests for the existence of black holes through gravitational wave echoes. Nat Astron 1, 586–591 (2017). https://doi.org/10.1038/s41550-017-0225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-017-0225-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing