Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutualism-enhancing mutations dominate early adaptation in a two-species microbial community

Abstract

Species interactions drive evolution while evolution shapes these interactions. The resulting eco-evolutionary dynamics and their repeatability depend on how adaptive mutations available to community members affect fitness and ecologically relevant traits. However, the diversity of adaptive mutations is not well characterized, and we do not know how this diversity is affected by the ecological milieu. Here we use barcode lineage tracking to address this question in a community of yeast Saccharomyces cerevisiae and alga Chlamydomonas reinhardtii that have a net commensal relationship that results from a balance between competitive and mutualistic interactions. We find that yeast has access to many adaptive mutations with diverse ecological consequences, in particular those that increase and reduce the yields of both species. The presence of the alga does not change which mutations are adaptive in yeast (that is, there is no fitness trade-off for yeast between growing alone or with alga), but rather shifts selection to favour yeast mutants that increase the yields of both species and make the mutualism stronger. Thus, in the presence of the alga, adaptative mutations contending for fixation in yeast are more likely to enhance the mutualism, even though cooperativity is not directly favoured by natural selection in our system. Our results demonstrate that ecological interactions not only alter the trajectory of evolution but also dictate its repeatability; in particular, weak mutualisms can repeatably evolve to become stronger.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of ancestral yeast and alga.
Fig. 2: The presence of the alga affects adaptation in yeast at the fitness and genetic levels.
Fig. 3: Adaptive mutations in yeast have diverse ecological consequences.
Fig. 4: The effects of adaptive mutations on life-history traits, fitness and yield.

Similar content being viewed by others

Data availability

All raw sequencing data are available on the US National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject PRJNA735257. Other input data can be found on Dryad82. Strains and other biological materials are available by request to S.K. Source data are provided with this paper.

Code availability

The latest version of the barcode counting software BarcodeCounter2 is available at https://github.com/sandeepvenkataram/BarcodeCounter2.git. Analysis scripts, including the version of BarcodeCounter2 used in this study, can be found on Dryad82.

References

  1. Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical–temperate transition zone. Sci. Rep. 8, 11354 (2018).

    Article  Google Scholar 

  2. Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article  CAS  Google Scholar 

  3. Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. Biol. Sci. 284, 20170507 (2017).

    Google Scholar 

  4. White, E. P. et al. A comparison of the species–time relationship across ecosystems and taxonomic groups. Oikos 112, 185–195 (2006).

    Article  Google Scholar 

  5. Sax, D. F. & Gaines, S. D. Species invasions and extinction: the future of native biodiversity on islands. Proc. Natl Acad. Sci. USA 105, 11490–11497 (2008).

    Article  CAS  Google Scholar 

  6. Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).

    Article  CAS  Google Scholar 

  7. Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. Lond. B 364, 1629–1640 (2009).

    Article  Google Scholar 

  8. Reznick, D. N. & Travis, J. Experimental studies of evolution and eco-evo dynamics in guppies (Poecilia reticulata). Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024926 (2019).

  9. Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2020).

  10. Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    Article  CAS  Google Scholar 

  11. Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).

    Article  CAS  Google Scholar 

  12. Hansen, S. K., Rainey, P. B., Haagensen, J. A. J. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).

    Article  CAS  Google Scholar 

  13. Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA 107, 2124–2129 (2010).

    Article  CAS  Google Scholar 

  14. Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 (2011).

    Article  Google Scholar 

  15. Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, e1001330 (2012).

    Article  CAS  Google Scholar 

  16. Celiker, H. & Gore, J. Clustering in community structure across replicate ecosystems following a long-term bacterial evolution experiment. Nat. Commun. 5, 4643 (2014).

    Article  CAS  Google Scholar 

  17. Andrade-Domínguez, A. et al. Eco-evolutionary feedbacks drive species interactions. ISME J. 8, 1041–1054 (2014).

    Article  Google Scholar 

  18. Reznick, D. Hard and soft selection revisited: how evolution by natural selection works in the real world. J. Hered. 107, 3–14 (2016).

    Article  Google Scholar 

  19. Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).

    Article  CAS  Google Scholar 

  20. Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).

    Article  CAS  Google Scholar 

  21. Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. https://doi.org/10.1016/j.cub.2020.06.100 (2020).

  22. Adamowicz, E. M., Muza, M., Chacón, J. M. & Harcombe, W. R. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog. 16, e1008700 (2020).

    Article  CAS  Google Scholar 

  23. Rodríguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J. 15, 450–460 (2021).

    Article  Google Scholar 

  24. Barber, J. N. et al. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 15, 746–761 (2021).

    Article  CAS  Google Scholar 

  25. Hart, S. F. M., Chen, C.-C. & Shou, W. Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions. eLife 10, e57838 (2021).

    Article  Google Scholar 

  26. Kokko, H. et al. Can evolution supply what ecology demands? Trends Ecol. Evol. 32, 187–197 (2017).

    Article  Google Scholar 

  27. Nuismer, S. Introduction to Coevolutionary Theory (Macmillan Learning, 2017).

  28. Stoltzfus, A. & McCandlish, D. M. Mutational biases influence parallel adaptation. Mol. Biol. Evol. 34, 2163–2172 (2017).

    Article  CAS  Google Scholar 

  29. Payne, J. L. et al. Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biol. 17, e3000265 (2019).

    Article  CAS  Google Scholar 

  30. Storz, J. F. et al. The role of mutation bias in adaptive molecular evolution: insights from convergent changes in protein function. Philos. Trans. R. Soc. Lond. B 374, 20180238 (2019).

    Article  CAS  Google Scholar 

  31. Gomez, K., Bertram, J. & Masel, J. Mutation bias can shape adaptation in large asexual populations experiencing clonal interference. Proc. Biol. Sci. 287, 20201503 (2020).

    CAS  Google Scholar 

  32. Venkataram, S., Monasky, R., Sikaroodi, S. H., Kryazhimskiy, S. & Kacar, B. Evolutionary stalling and a limit on the power of natural selection to improve a cellular module. Proc. Natl Acad. Sci. USA 117, 18582–18590 (2020).

    Article  CAS  Google Scholar 

  33. Hom, E. F. Y. & Murray, A. W. Niche engineering demonstrates a latent capacity for fungal–algal mutualism. Science 345, 94–98 (2014).

    Article  CAS  Google Scholar 

  34. Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).

    Article  CAS  Google Scholar 

  35. Chacón, J. M., Hammarlund, S. P., Martinson, J. N. V., Smith, L. B. & Harcombe, W. R. The ecology and evolution of model microbial mutualisms. Annu. Rev. Ecol. Evol. Syst. 52, 363–384 (2021).

    Article  Google Scholar 

  36. Blasche, S., Kim, Y., Oliveira, A. P. & Patil, K. R. Model microbial communities for ecosystems biology. Curr. Opin. Syst. Biol. 6, 51–57 (2017).

    Article  Google Scholar 

  37. Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015).

    Article  CAS  Google Scholar 

  38. Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).

    Article  CAS  Google Scholar 

  39. Jones, E. I., Bronstein, J. L. & Ferrière, R. The fundamental role of competition in the ecology and evolution of mutualisms. Ann. N. Y. Acad. Sci. 1256, 66–88 (2012).

    Article  Google Scholar 

  40. Boyer, S., Hérissant, L. & Sherlock, G. Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment. PLoS Genet. 17, e1009314 (2021).

    Article  CAS  Google Scholar 

  41. Blundell, J. R. et al. The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nat. Ecol. Evol. 3, 293–301 (2019).

    Article  Google Scholar 

  42. Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).

    Article  CAS  Google Scholar 

  43. Good, B. H., Martis, S. & Hallatschek, O. Adaptation limits ecological diversification and promotes ecological tinkering during the competition for substitutable resources. Proc. Natl Acad. Sci. USA 115, E10407–E10416 (2018).

    Article  CAS  Google Scholar 

  44. Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate and spectrum in yeast. Proc. Natl Acad. Sci. USA 111, E2310–E2318 (2014).

    Article  CAS  Google Scholar 

  45. Dunham, M. J. et al. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 16144–16149 (2002).

    Article  CAS  Google Scholar 

  46. Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).

    Article  CAS  Google Scholar 

  47. Sunshine, A. B. et al. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol. 13, e1002155 (2015).

    Article  Google Scholar 

  48. Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102-103, 127–144 (1998).

    Article  CAS  Google Scholar 

  49. Desai, M. M. & Fisher, D. S. Beneficial mutation–selection balance and the effect of linkage on positive selection. Genetics 176, 1759–1798 (2007).

    Article  Google Scholar 

  50. Schiffels, S., Szöllosi, G. J., Mustonen, V. & Lässig, M. Emergent neutrality in adaptive asexual evolution. Genetics 189, 1361–1375 (2011).

    Article  Google Scholar 

  51. Nguyen, Ba,A. N. et al. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature 575, 494–499 (2019).

    Article  Google Scholar 

  52. Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004).

    Article  CAS  Google Scholar 

  53. Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).

    Article  Google Scholar 

  54. Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).

    Google Scholar 

  55. Vasi, F., Travisano, M. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. II. Changes in life-history traits during adaptation to a seasonal environment. Am. Nat. 144, 432–456 (1994).

    Article  Google Scholar 

  56. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 2001).

  57. Reznick, D., Bryant, M. J. & Bashey, F. r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).

    Article  Google Scholar 

  58. Mueller, L. D. & Ayala, F. J. Trade-off between r-selection and K-selection in Drosophila populations. Proc. Natl Acad. Sci. USA 78, 1303–1305 (1981).

    Article  CAS  Google Scholar 

  59. Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251 (2006).

    Article  Google Scholar 

  60. Bachmann, H. et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc. Natl Acad. Sci. USA 110, 14302–14307 (2013).

    Article  CAS  Google Scholar 

  61. Lipson, D. A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 6, 615 (2015).

    Article  Google Scholar 

  62. Orivel, J. et al. Trade-offs in an ant–plant–fungus mutualism. Proc. Biol. Sci. 284, 20161679 (2017).

    Google Scholar 

  63. Fritts, R. K. et al. Enhanced nutrient uptake is sufficient to drive emergent cross-feeding between bacteria in a synthetic community. ISME J. 14, 2816–2828 (2020).

    Article  CAS  Google Scholar 

  64. Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J. & Liebermeister, W. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput. Biol. 14, e1006010 (2018).

    Article  Google Scholar 

  65. Cheng, C. et al. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS Comput. Biol. 15, e1007066 (2019).

    Article  CAS  Google Scholar 

  66. Luckinbill, L. S. r and K selection in experimental populations of Escherichia coli. Science 202, 1201–1203 (1978).

    Article  CAS  Google Scholar 

  67. Oxman, E., Alon, U. & Dekel, E. Defined order of evolutionary adaptations: experimental evidence. Evolution 62, 1547–1554 (2008).

    Article  Google Scholar 

  68. Jasmin, J.-N., Dillon, M. M. & Zeyl, C. The yield of experimental yeast populations declines during selection. Proc. Biol. Sci. 279, 4382–4388 (2012).

    Google Scholar 

  69. Laan, L., Koschwanez, J. H. & Murray, A. W. Evolutionary adaptation after crippling cell polarization follows reproducible trajectories. eLife 4, e09638 (2015).

    Article  Google Scholar 

  70. Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    Article  Google Scholar 

  71. Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    Article  Google Scholar 

  72. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

    Article  CAS  Google Scholar 

  73. Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).

    Article  CAS  Google Scholar 

  74. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

    Article  CAS  Google Scholar 

  75. Hillesland, K. L. et al. Erosion of functional independence early in the evolution of a microbial mutualism. Proc. Natl Acad. Sci. USA 111, 14822–14827 (2014).

    Article  CAS  Google Scholar 

  76. Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 (2021).

    Article  CAS  Google Scholar 

  77. MacLean, R. C. The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental studies. Heredity 100, 471–477 (2008).

    Article  CAS  Google Scholar 

  78. Dunn, B. et al. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet. 9, e1003366 (2013).

    Article  CAS  Google Scholar 

  79. Barillot, E., Lacroix, B. & Cohen, D. Theoretical analysis of library screening using a N-dimensional pooling strategy. Nucleic Acids Res. 19, 6241–6247 (1991).

    Article  CAS  Google Scholar 

  80. Baym, M., Shaket, L., Anzai, I. A., Adesina, O. & Barstow, B. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku. Nat. Commun. 7, 13270 (2016).

    Article  CAS  Google Scholar 

  81. Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

    Article  Google Scholar 

  82. Venkataram, S., Kuo, H., Hom, E., Kryazhimskiy, S. Early adaptation in a microbial community is dominated by mutualism-enhancing mutations. Dryad https://doi.org/10.6076/D14K5X (2022).

Download references

Acknowledgements

We thank G. Sherlock and K. Schwartz for providing the barcoded yeast library, S. Mayfield and F. Fields for laboratory equipment and help with algal husbandry, R. Dutton and M. Morin for help with sequencing, S. Rifkin and J. Bloom for help with microscopy, STARS students J. Yu and S. Rosemann for help with experiments, J. Meyer, A. Martsul and S. Sikaroodi for technical assistance, the Kryazhimskiy, Meyer and Hwa labs and D. Barrett, J. Borin, S. de Silva, S. Dunker, N. Garud, S. Harpole, C. Karakoç, H. Moeller, D. Petrov and P. Zee for feedback on the manuscript. Sequencing was done in part at the UCSD IGM Center (University of California, San Diego, La Jolla, CA). We acknowledge the San Diego Supercomputing Center for the use of the TSCC cluster for computing services. This project has been supported by the National Science Foundation CAREER grant 1846376 (E.F.Y.H.), Deutsches Zentrum für Integrative Biodiversitätsforschung (iDiv) grant DFG–FZT 118, 202548816 (E.F.Y.H.), BWF Career Award at the Scientific Interface grant 1010719.01 (S.K.), Alfred P. Sloan Foundation grant FG-2017-9227 (S.K.) and the Hellman Foundation (S.K.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (S.V., E.F.Y.H. and S.K.), methodology (S.V., H.-Y.K. and S.K.), data acquisition (S.V.), analysis (S.V., H.-Y.K. and S.K.), initial manuscript (S.V. and S.K.), editing (S.V., H.-Y.K., E.F.Y.H. and S.K.), supervision (E.F.Y.H. and S.K.) and funding (S.K. and E.F.Y.H.).

Corresponding author

Correspondence to Sergey Kryazhimskiy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jeff Gore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Per capita net population change for the ancestral yeast and alga.

Same data as in Fig. 1 (n = 6 except yeast alone where n = 4). Data points depict mean values ±1 SEM.

Source data

Extended Data Fig. 2 Frequency trajectories of barcoded lineages in yeast in the A-condition.

Each panel shows a BLT replicate population in the A-condition, as indicated. Lineage frequencies were measured at every odd cycle. Twenty random adapted lineages are shown in red, and twenty random neutral lineages are shown in blue.

Source data

Extended Data Fig. 3 Frequency trajectories of barcoded lineages in yeast in the C-condition.

Each panel shows a BLT replicate population in the C-condition, as indicated. Lineage frequencies were measured at every odd cycle. Twenty random adapted lineages are shown in red, and twenty random neutral lineages are shown in blue.

Source data

Extended Data Fig. 4 Distribution of adaptive mutations across the most common driver loci.

Driver loci with 5 or more mutations are shown. See Data S3 for the full distribution. Colors are the same as in Fig. 2.

Source data

Extended Data Fig. 5 Probabilities of observing adaptive mutations at the most common driver loci in the whole-genome sequencing data.

A. Shades of gray represent the probability of sampling at least one clone with a beneficial mutation that arises at a certain rate (y-axis) and provides a certain fitness benefit in the A-condition (x-axis). The most common driver loci are shown by points (colors are the same as in Fig. 2). The estimated beneficial mutation rate and the selection coefficient for each mutation class are given in Table S3. B. Same as A but for the C-condition. The mutation rate for each locus is assumed to be the same in both conditions, but the selection coefficients vary. C. Black points show the number of sequenced clones with a given driver mutation found per replicate population in either A- (left) or C-condition (right; n = 5 replicate populations per condition). Box and whiskers show the distributions of these numbers found in our simulations (mid-line shows the median, boxes show the 25th and 75th quantiles, whiskers show the 5th and 95th quantiles).

Source data

Extended Data Fig. 6 Distribution of yields in mutant communities weighted by frequencies of adaptive mutations.

The heatmap shows the ratio of estimated probability densities DC and DA of observing a given pair of yeast and alga yields in hypothetical communities formed by the alga ancestor and yeast mutants contending for fixation in the C- and A-conditions. Data points are identical to Fig. 3B in the main text. DA and DC are estimated by weighing each data point by the frequency of occurrence of the corresponding mutation among the sequenced A- and C-mutants, respectively (see Methods for details). Regions where either DA or DC falls below 0.03 are colored gray. YYC and YYA are normalized by the respective ancestral values.

Source data

Extended Data Fig. 7 Correlations between competitive fitness and yields.

Normalization is relative to the ancestor. Error bars represent ±1 SEM. For all panels, n = 31 for A-mutants and n = 28 for C-mutants with three replicate fitness measurements and two replicate YYC, AYC and YYA measurements. Pearson correlation coefficients (R) are reported for each panel, as are P-values calculated by a two-tailed permutation test.

Source data

Extended Data Fig. 8 Representative microscopy image showing lack of physical associations between yeast and algae cells.

Mutant culture formed by the C-mutant C2 (barcode ID 109098) is shown. Yeast and alga cells are indicated with arrows. Similar observations were made for 17 other mutants (available on Dryad82).

Extended Data Fig. 9 Relationship between growth rate, yields and fitness.

In all panels, normalization is relative to the ancestor. Error bars represent ±1 standard error of the mean. For all panels, n = 31 for A-mutants and n = 28 for C-mutants with three replicate fitness measurements and two replicate YYC, AYC and Δr measurements. Pearson correlation coefficients (R) are reported for each panel, as are P-values calculated by a two-tailed permutation test.

Source data

Extended Data Fig. 10 Relationship between carrying capacity, yields and fitness.

In all panels, normalization is relative to the ancestor. Error bars represent ±1 standard error of the mean. For all panels, n = 31 for A-mutants and n = 28 for C-mutants with three replicate fitness measurements and two replicate AYC, YYA and ΔK measurements. Pearson correlation coefficients (R) are reported for each panel, as are P-values calculated by a two-tailed permutation test.

Source data

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–22 and Tables 1–4.

Reporting Summary

Peer Review File

Supplementary Data

Additional source data for supplementary figures and tables.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataram, S., Kuo, HY., Hom, E.F.Y. et al. Mutualism-enhancing mutations dominate early adaptation in a two-species microbial community. Nat Ecol Evol 7, 143–154 (2023). https://doi.org/10.1038/s41559-022-01923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01923-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing