Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple facets of biodiversity drive the diversity–stability relationship

Abstract

A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity–stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the ‘fast–slow’ leaf economics spectrum in driving the diversity–stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast–slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity–stability relationship demonstrates a more multicausal relationship than has been previously acknowledged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationships among ecosystem stability, plant species richness and species asynchrony across experimental grasslands.
Fig. 2: Relationships among ecosystem stability, phylogenetic and fast-slow functional diversity, and the community-weighted mean of fast–slow traits across experimental grasslands.
Fig. 3: Direct and indirect effects of multiple facets of biodiversity on ecosystem stability across experimental grasslands.
Fig. 4: Direct and indirect effects of multiple facets of biodiversity on mean and variation in aboveground biomass production across experimental grasslands.

Similar content being viewed by others

References

  1. May, R. M. Stability and Complexity in Model Ecosystems 6 (Princeton Univ. Press, Princeton, NJ, 1973).

  2. McNaughton, S. J. Stability and diversity of ecological communities. Nature 274, 251–253 (1978).

    Article  Google Scholar 

  3. Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).

    Article  Google Scholar 

  4. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    Article  PubMed  Google Scholar 

  6. Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).

    Article  PubMed  Google Scholar 

  8. Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    Article  PubMed  Google Scholar 

  9. Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, L. & Pu, Z. Different effects of species diversity on temporal stability in single-trophic and multitrophic communities. Am. Nat. 174, 651–659 (2009).

    Article  PubMed  Google Scholar 

  11. Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Campbell, V., Murphy, G. & Romanuk, T. N. Experimental design and the outcome and interpretation of diversity–stability relations. Oikos 120, 399–408 (2011).

    Article  Google Scholar 

  13. de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).

    Article  PubMed  Google Scholar 

  14. Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).

    Article  PubMed  Google Scholar 

  15. Aussenac, R. et al. Intraspecific variability in growth response to environmental fluctuations modulates the stabilizing effect of species diversity on forest growth. J. Ecol. 105, 1010–1020 (2017).

    Article  Google Scholar 

  16. del Río, M. et al. Species interactions increase the temporal stability of community productivity in Pinus sylvestris–Fagus sylvatica mixtures across Europe. J. Ecol. 105, 1032–1043 (2017).

    Article  Google Scholar 

  17. Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    Article  PubMed  Google Scholar 

  18. Arnoldi, J.-F., Loreau, M. & Haegeman, B. Resilience, reactivity and variability: a mathematical comparison of ecological stability measures. J. Theor. Biol. 389, 47–59 (2016).

    Article  PubMed  Google Scholar 

  19. Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).

    Google Scholar 

  20. van Ruijven, J. & Berendse, F. Diversity enhances community recovery, but not resistance, after drought. J. Ecol. 98, 81–86 (2010).

    Article  Google Scholar 

  21. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).

    Article  PubMed  Google Scholar 

  25. Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011).

    Article  PubMed  Google Scholar 

  26. Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92, 296–303 (2011).

    Article  PubMed  Google Scholar 

  27. Tredennick, A. T., de Mazancourt, C., Loreau, M. & Adler, P. B. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology 98, 971–981 (2017).

    Article  PubMed  Google Scholar 

  28. Naeem, S. et al. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory’s impact on plant biodiversity. Proc. R. Soc. B 283, 20153005 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).

    Article  Google Scholar 

  30. Roscher, C. et al. Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).

    Article  Google Scholar 

  31. Lepš, J., Májeková, M., Vítová, A., Doležal, J. & de Bello, F. Stabilizing effects in temporal fluctuations: management, traits, and species richness in high-diversity communities. Ecology 99, 360–371 (2018).

    Article  PubMed  Google Scholar 

  32. Cadotte, M. W., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233 (2012).

    Article  Google Scholar 

  33. Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem–function relationships. Ecology 92, 1573–1581 (2011).

    Article  PubMed  Google Scholar 

  34. Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).

    Article  Google Scholar 

  35. Cadotte, M. W. Phylogenetic diversity and productivity: gauging interpretations from experiments that do not manipulate phylogenetic diversity. Funct. Ecol. 29, 1603–1606 (2015).

    Article  Google Scholar 

  36. Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trend Ecol. Evol. 16, 646–655 (2001).

    Article  Google Scholar 

  37. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article  Google Scholar 

  39. Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).

    Article  Google Scholar 

  40. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Polley, H. W., Isbell, F. I. & Wilsey, B. J. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos 122, 1275–1282 (2013).

    Article  Google Scholar 

  42. Májeková, M., de Bello, F., Doležal, J. & Lepš, J. Plant functional traits as determinants of population stability. Ecology 95, 2369–2374 (2014).

    Article  Google Scholar 

  43. Gomez, J. M., Verdu, M. & Perfectti, F. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465, 918–921 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Reinhart, K. O., Wilson, G. W. T. & Rinella, M. J. Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol. Lett. 15, 689–695 (2012).

    Article  PubMed  Google Scholar 

  45. Gilbert, G. S., Magarey, R., Suiter, K. & Webb, C. O. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 5, 869–878 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).

    Article  Google Scholar 

  48. Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656 (2014).

    Article  Google Scholar 

  49. O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Change 4, 710–714 (2014).

    Article  CAS  Google Scholar 

  50. Weigelt, A., Schumacher, J., Roscher, C. & Schmid, B. Does biodiversity increase spatial stability in plant community biomass?. Ecol. Lett. 11, 338–347 (2008).

    Article  PubMed  Google Scholar 

  51. Fargione, J. & Tilman, D. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143, 598–606 (2005).

    Article  PubMed  Google Scholar 

  52. Reich, P. B. et al. Impact of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Edwards, E. J., Osborne, C. P., Strömberg, C. A. E. & Smith, S. A. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Bartlett, M. K., Scoffoni, C. & Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol. Lett. 15, 393–405 (2012).

    Article  PubMed  Google Scholar 

  59. Schroeder‐Georgi, T. et al. From pots to plots: hierarchical trait‐based prediction of plant performance in a mesic grassland. J. Ecol. 104, 206–218 (2016).

    Article  Google Scholar 

  60. Iversen, C. M. et al. A global fine-root ecology database to address below-ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).

    Article  PubMed  Google Scholar 

  61. Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ. Rev. 24, 164–186 (2016).

    Article  Google Scholar 

  62. Hoover, D. L., Duniway, M. C. & Belnap, J. Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems. Oecologia 179, 1211–1221 (2015).

    Article  PubMed  Google Scholar 

  63. Shi, Z. et al. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nat. Commun. 7, 11973 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitchell, C. E., Tilman, D. & Groth, J. V. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83, 1713–1726 (2002).

    Article  Google Scholar 

  65. Wilsey, B. J. & Polley, H. W. Realistically low species evenness does not alter grassland species–richness–productivity relationships. Ecology 85, 2693–2700 (2004).

    Article  Google Scholar 

  66. Wilsey, B. J., Teaschner, T. B., Daneshgar, P. P., Isbell, F. I. & Polley, H. W. Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities. Ecol. Lett. 12, 432–442 (2009).

    Article  PubMed  Google Scholar 

  67. Hallett, L. M. et al. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95, 1693–1700 (2014).

    Article  PubMed  Google Scholar 

  68. Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Craine, J. M. et al. Timing of climate variability and grassland productivity. Proc. Natl Acad. Sci. USA 109, 3401–3405 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stuart-Haëntjens, E. et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 636, 360–366 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, Z. et al. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. J. Ecol. 103, 1308–1316 (2015).

    Article  Google Scholar 

  72. Yang, Z. et al. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. Glob. Change Biol. 23, 154–163 (2017).

    Article  Google Scholar 

  73. Craven, D. et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Phil. Trans. R. Soc. B 371, 20150277 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article  Google Scholar 

  76. Eisenhauer, N. et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. 27, 1061–1070 (2016).

    Article  Google Scholar 

  77. Goodess, C. M. How is the frequency, location and severity of extreme events likely to change up to 2060?. Environ. Sci. Policy 27, S4–S14 (2013).

    Article  Google Scholar 

  78. Stott, P. How climate change affects extreme weather events. Science 352, 1517–1518 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinform. 14, 16 (2013).

    Article  Google Scholar 

  80. Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).

    Article  PubMed  Google Scholar 

  81. Kattge, J. et al. TRY - a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  82. Grime, J. P. Plant strategy theories: a comment on Craine (2005). J. Ecol. 95, 227–230 (2007).

    Article  Google Scholar 

  83. Wacker, L., Baudois, O., Eichenberger-Glinz, S. & Schmid, B. Diversity effects in early- and mid-successional species pools along a nitrogen gradient. Ecology 90, 637–648 (2009).

    Article  PubMed  Google Scholar 

  84. Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Daneshgar, P. P., Polley, H. W. & Wilsey, B. J. Simple plant traits explain functional group diversity decline in novel grassland communities of Texas. Plant Ecol. 214, 231–241 (2013).

    Article  Google Scholar 

  86. Roscher, C.et al. Origin context of trait data matters for predictions of community performance in a grassland biodiversity experiment. Ecology 99, 1214–1226 2018).

    Article  PubMed  Google Scholar 

  87. Kazakou, E. et al. Are trait-based species rankings consistent across data sets and spatial scales?. J. Veg. Sci. 25, 235–247 (2014).

    Article  Google Scholar 

  88. Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).

    Article  PubMed  Google Scholar 

  89. Lê, S. et al. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  90. Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article  PubMed  Google Scholar 

  91. Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Zanne, A. et al. Data from: Three keys to the radiation of angiosperms into freezing environments (Dryad Digital Repository, 2013); https://doi.org/10.5061/dryad.63q27.2

  93. Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article  Google Scholar 

  95. Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).

    Article  PubMed  Google Scholar 

  96. Valencia-Gómez, E. et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 206, 660–671 (2015).

    Article  PubMed Central  Google Scholar 

  97. Middleton, N. J. & Thomas, D. S. World Atlas of Desertification (United Nations Environment Programme/Edward Arnold, London, 1992).

  98. Harris, I. C. & Jones, P. D. CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (January 1901–December 2016). Centre for Environmental Data Analysis https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0 (2017).

  99. Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer Science & Business Media, New York, NY, 2003).

  100. Lefcheck, J. S. iecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  101. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

Download references

Acknowledgements

This paper is a product of the sTability group funded by sDiv (www.idiv.de/stability), the Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (DFG FZT 118). The Jena Experiment is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; FOR 1451) and the Swiss National Science Foundation. The Cedar Creek biodiversity experiments were supported by awards from the Andrew Mellon Foundation, the US National Science Foundation (NSF) Long-Term Ecological Research (grant numbers DEB-9411972, DEB-0080382, DEB-0620652 and DEB-1234162), Biocomplexity Coupled Biogeochemical Cycles (DEB-0322057), Long-Term Research in Environmental Biology (DEB-0716587, DEB-1242531) and Ecosystem Sciences (NSF DEB- 1120064) Programs, as well as the US Department of Energy Programs for Ecosystem Research (DE-FG02-96ER62291) and National Institute for Climatic Change Research (DE-FC02-06ER64158). The Texas MEND study was funded by US-NSF DEB-0639417 and USDA-NIFA-2014-67003-22067. The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). TRY is currently supported by DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. V.O. received financial support from the Russian Science Foundation (14-50-00029). The authors would also like to thank J. Lefcheck for his help in revising the structural equation models.

Authorship contributions

D.C., N.E. and F.I. conceived the project. D.C., P.M., N.E., W.D.P., Y.H., C.R., F.I., A.E., J.N.G., J.H., A.J., N.L., S.T.M., J.v.R., A.W. and M.D.S. further developed the project in a workshop. N.E., C.R., F.I., M.B., C.Be., G.B., N.B., C.By., B.E.L.C., J.A.C., J.H.C.C., J.M.C., E.D.L., A.H., A.J., J.Ka., J.Kr., V.L., V.M., V.O., H.W.P., P.B.R., J.v.R., B.S., N.A.S., D.T., A.W. and B.W. contributed experimental and functional trait data. D.C. compiled data. D.C. analysed data with significant input from P.M., N.E., W.D.P. and Y.H. D.C. and P.M. wrote the first draft of the manuscript and all co-authors contributed substantially to revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan Craven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15, Supplementary Tables 1–4, Supplementary Appendix 1–2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craven, D., Eisenhauer, N., Pearse, W.D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat Ecol Evol 2, 1579–1587 (2018). https://doi.org/10.1038/s41559-018-0647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0647-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing