Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease

Abstract

Psychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in Alzheimer disease (AD with psychosis, AD + P). AD + P affects ~50% of individuals with AD, identifies a subgroup with poor outcomes, and is associated with a greater degree of cognitive impairment and depressive symptoms, compared to subjects without psychosis (AD − P). Although the estimated heritability of AD + P is 61%, genetic sources of risk are unknown. We report a genome-wide meta-analysis of 12,317 AD subjects, 5445 AD + P. Results showed common genetic variation accounted for a significant portion of heritability. Two loci, one in ENPP6 (rs9994623, O.R. (95%CI) 1.16 (1.10, 1.22), p = 1.26 × 10−8) and one spanning the 3′-UTR of an alternatively spliced transcript of SUMF1 (rs201109606, O.R. 0.65 (0.56–0.76), p = 3.24 × 10−8), had genome-wide significant associations with AD + P. Gene-based analysis identified a significant association with APOE, due to the APOE risk haplotype ε4. AD + P demonstrated negative genetic correlations with cognitive and educational attainment and positive genetic correlation with depressive symptoms. We previously observed a negative genetic correlation with schizophrenia; instead, we now found a stronger negative correlation with the related phenotype of bipolar disorder. Analysis of polygenic risk scores supported this genetic correlation and documented a positive genetic correlation with risk variation for AD, beyond the effect of ε4. We also document a small set of SNPs likely to affect risk for AD + P and AD or schizophrenia. These findings provide the first unbiased identification of the association of psychosis in AD with common genetic variation and provide insights into its genetic architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SNP associations with psychosis in AD.

Similar content being viewed by others

References

  1. Sweet RA, Nimgaonkar VL, Devlin B, Jeste DV. Psychotic symptoms in Alzheimer disease: evidence for a distinct phenotype. Mol Psychiatry. 2003;8:383–92.

    CAS  PubMed  Google Scholar 

  2. Ropacki SA, Jeste DV. Epidemiology of and risk factors for psychosis of Alzheimer’s disease: a review of 55 studies published from 1990 to 2003. Am J Psychiatry. 2005;162:2022–30.

    PubMed  Google Scholar 

  3. Weamer EA, Emanuel JE, Varon D, Miyahara S, Wilkosz PA, Lopez OL, et al. The relationship of excess cognitive impairment in MCI and early Alzheimer’s disease to the subsequent emergence of psychosis. Int Psychogeriatr. 2009;21:78–85.

    PubMed  Google Scholar 

  4. Emanuel JE, Lopez OL, Houck PR, Becker JT, Weamer EA, DeMichele-Sweet MA, et al. Trajectory of cognitive decline as a predictor of psychosis in early Alzheimer disease in the cardiovascular health study. Am J Geriatr Psychiatry. 2011;19:160–8.

    PubMed  PubMed Central  Google Scholar 

  5. Sweet RA, Bennett DA, Graff-Radford NR, Mayeux R. Assessment and familial aggregation of psychosis in Alzheimer’s disease from the National Institute on Aging Late Onset Alzheimer’s Disease Family Study. Brain. 2010;133:1155–62.

    PubMed  PubMed Central  Google Scholar 

  6. Seltman HJ, Mitchell S, Sweet RA. A Bayesian model of psychosis symptom trajectory in Alzheimer’s disease. Int J Geriatr Psychiatry. 2016;31:204–10.

    PubMed  Google Scholar 

  7. Sweet RA, Seltman H, Emanuel JE, Lopez OL, Becker JT, Bis JC, et al. Effect of Alzheimer’s disease risk genes on trajectories of cognitive function in the Cardiovascular Health Study. Am J Psychiatry. 2012;169:954–62.

    PubMed  PubMed Central  Google Scholar 

  8. Koppel J, Sunday S, Goldberg TE, Davies P, Christen E, Greenwald BS. Psychosis in Alzheimer’s disease is associated with frontal metabolic impairment and accelerated decline in working memory: findings from the Alzheimer’s Disease Neuroimaging Initiative. Am J Geriatr Psychiatry. 2014;22:698–707.

    PubMed  Google Scholar 

  9. Koppel J, Goldberg TE, Gordon ML, Huey E, Davies P, Keehlisen L, et al. Relationships between behavioral syndromes and cognitive domains in Alzheimer disease: the impact of mood and psychosis. Am J Geriatr Psychiatry. 2012;20:994–1000.

    PubMed  Google Scholar 

  10. Gilley DW, Whalen ME, Wilson RS, Bennett DA. Hallucinations and associated factors in Alzheimer’s disease. J. Neuropsychiatry. 1991;3:371–6.

    CAS  Google Scholar 

  11. Gilley DW, Wilson RS, Beckett LA, Evans DA. Psychotic symptoms and physically aggressive behavior in Alzheimer’s disease. J Am Geriatr Soc. 1997;45:1074–9.

    CAS  PubMed  Google Scholar 

  12. Sweet RA, Pollock BG, Sukonick DL, Mulsant BH, Rosen J, Klunk WE, et al. The 5-HTTPR polymorphism confers liability to a combined phenotype of psychotic and aggressive behavior in Alzheimer’s disease. Int Psychogeriatr. 2001;13:401–9.

    CAS  PubMed  Google Scholar 

  13. Wilkosz PA, Kodavali C, Weamer EA, Miyahara S, Lopez OL, Nimgaonkar VL, et al. Prediction of psychosis onset in Alzheimer disease: the role of depression symptom severity and the HTR2A T102C polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:1054–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilkosz PA, Miyahara S, Lopez OL, DeKosky ST, Sweet RA. Prediction of psychosis onset in Alzheimer disease: the role of cognitive impairment, depressive symptoms, and further evidence for psychosis subtypes. Am J Geriatr Psychiatry. 2006;14:352–60.

    PubMed  Google Scholar 

  15. Lyketsos CG, Sheppard JM, Steinberg M, Tschanz JA, Norton MC, Steffens DC, et al. Neuropsychiatric disturbance in Alzheimer’s disease clusters into three groups: the Cache County study. Int J Geriatr Psychiatry. 2001;16:1043–53.

    CAS  PubMed  Google Scholar 

  16. Kaufer DI, Cummings JL, Christine D, Bray T, Castellon S, Masterman D, et al. Assessing the impact of neuropsychiatric symptoms in Alzheimer’s disease: the neuropsychiatric inventory caregiver distress scale. J Am Geriatr Soc. 1998;46:210–5.

    CAS  PubMed  Google Scholar 

  17. Rabins PV, Mace NL, Lucas MJ. The impact of dementia on the family. JAMA. 1982;248:333–5.

    CAS  PubMed  Google Scholar 

  18. Lopez OL, Wisniewski SR, Becker JT, Boller F, DeKosky ST. Psychiatric medication and abnormal behavior as predictors of progression in probable Alzheimer disease. Arch Neurol. 1999;56:1266–72.

    CAS  PubMed  Google Scholar 

  19. Magni E, Binetti G, Bianchetti A, Trabucchi M. Risk of mortality and institutionalization in demented patients with delusions. J Geriatr Psychiatry Neurol. 1996;9:123–6.

    CAS  PubMed  Google Scholar 

  20. Cummings JL, Diaz C, Levy M, Binetti G, Litvan II. Neuropsychiatric syndromes in neurodegenerative disease: frequency and signficance. Semin Clin Neuropsychiatry. 1996;1:241–7.

    CAS  PubMed  Google Scholar 

  21. Bassiony MM, Steinberg M, Rosenblatt A, Baker A, Lyketsos CG. Delusions and hallucinations in Alzheimer’s disease: prevalence and clinical correlates. Int J Geriatr Psychiatry. 2000;15:99–107.

    CAS  PubMed  Google Scholar 

  22. Wilson RS, Tang Y, Aggarwal NT, Gilley DW, Mccann JJ, Bienias JL, et al. Hallucinations, cognitive decline, and death in Alzheimer’s disease. Neuroepidemiology. 2006;26:68–75.

    CAS  PubMed  Google Scholar 

  23. Bacanu SA, Devlin B, Chowdari KV, DeKosky ST, Nimgaonkar VL, Sweet RA. Heritability of psychosis in Alzheimer disease. Am J of Geriatr Psychiatry. 2005;13:624–7.

    Google Scholar 

  24. Sweet RA, Nimgaonkar VL, Devlin B, Lopez OL, DeKosky ST. Increased familial risk of the psychotic phenotype of Alzheimer disease. Neurology. 2002;58:907–11.

    CAS  PubMed  Google Scholar 

  25. Hollingworth P, Hamshere ML, Holmans PA, O’Donovan MC, Sims R, Powell J, et al. Increased familial risk and genomewide significant linkage for Alzheimer’s disease with psychosis. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:841–8.

    CAS  PubMed  Google Scholar 

  26. Barral S, Vardarajan BN, Reyes-Dumeyer D, Faber KM, Bird TD, Tsuang D, et al. Genetic variants associated with susceptibility to psychosis in late-onset Alzheimer’s disease families. Neurobiol Aging. 2015;36:3116–3116.

    PubMed  PubMed Central  Google Scholar 

  27. Hollingworth P, Sweet R, Sims R, Harold D, Russo G, Abraham R, et al. Genome-wide association study of Alzheimer’s disease with psychotic symptoms. Mol Psychiatry. 2012;17:1316–27.

    CAS  PubMed  Google Scholar 

  28. DeMichele-Sweet MAA, Weamer EA, Klei L, Vrana DT, Hollingshead DJ, Seltman HJ, et al. Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol Psychiatry. 2018;23:963–72. https://doi.org/10.1038/mp.2017.81.

    Article  CAS  PubMed  Google Scholar 

  29. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34:939–44.

    CAS  PubMed  Google Scholar 

  30. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41:479–86.

    CAS  PubMed  Google Scholar 

  31. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303:1832–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lambert MJ, Hatch DR, Kingston MD, Edwards BC. Zung, Beck, and Hamilton Rating Scales as measures of treatment outcome: A meta-analytic comparison. J. Consult Clin Psychol. 1986;54:54–9.

    CAS  PubMed  Google Scholar 

  33. Moreno-Grau S, de Rojas I, Hernandez I, Quintela I, Montrreal L, Alegret M, et al. Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer’s disease and three causality networks: the GR@ACE project. Alzheimers Dement. 2019;15:1333–47. https://doi.org/10.1016/j.jalz.2019.06.4950.

    Article  PubMed  Google Scholar 

  34. DeMichele-Sweet, MA, Lopez, OL & Sweet, RA. Psychosis in Alzheimer’s disease in the national Alzheimer’s disease coordinating center uniform data set: clinical correlates and association with apolipoprotein e. Int J Alzheimers Dis. 2011;2011:926597. https://doi.org/10.4061/2011/926597.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:311–21. https://doi.org/10.1056/NEJMoa1312889.

    Article  CAS  PubMed  Google Scholar 

  36. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N Engl J Med. 2018;378:321–30. https://doi.org/10.1056/NEJMoa1705971.

    Article  CAS  PubMed  Google Scholar 

  37. Lovestone S, Francis P, Kloszewska I, Mecocci P, Simmons A, Soininen H, et al. AddNeuroMed-the European collaboration for the discovery of novel biomarkers for Alzheimer’s disease. Ann N Y Acad Sci. 2009;1180:36–46. https://doi.org/10.1111/j.1749-6632.2009.05064.x.

    Article  CAS  PubMed  Google Scholar 

  38. Roen I, Selbaek G, Kirkevold O, Engedal K, Testad I, Bergh S. Resourse Use and Disease Couse in dementia - Nursing Home (REDIC-NH), a longitudinal cohort study; design and patient characteristics at admission to Norwegian nursing homes. BMC Health Serv Res. 2017;17:365. https://doi.org/10.1186/s12913-017-2289-x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Helvik AS, Engedal K, Saltyte Benth J, Selbaek G. Time from symptom debut to dementia assessment by the specialist healthcare service in Norway. Dement Geriatr Cogn Dis Extra. 2018;8:117–27. https://doi.org/10.1159/000487233.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eldholm RS, Barca ML, Persson K, Knapskog AB, Kersten H, Engedal K, et al. Progression of Alzheimer’s disease: a longitudinal study in norwegian memory clinics. J Alzheimers Dis. 2018;61:1221–32. https://doi.org/10.3233/JAD-170436.

    Article  PubMed  Google Scholar 

  41. Bergh S, Holmen J, Gabin J, Stordal E, Fikseaunet A, Selbaek G, et al. Cohort profile: the Health and Memory Study (HMS): a dementia cohort linked to the HUNT study in Norway. Int J Epidemiol. 2014;43:1759–68. https://doi.org/10.1093/ije/dyu007.

    Article  PubMed  Google Scholar 

  42. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13. https://doi.org/10.1038/s41588-018-0311-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DeMichele-Sweet MA, Klei L, Devlin B, Ferrell RE, Weamer EA, Emanuel JE, et al. No association of psychosis in Alzheimer disease with neurodegenerative pathway genes. Neurobiol Aging. 2011;32:555–511.

    PubMed  Google Scholar 

  44. Weamer EA, DeMichele-Sweet MA, Cloonan YK, Lopez OL, Sweet RA. Incident Psychosis in subjects with mild cognitive impairment or Alzheimer’s disease. J. Clin. Psychiatry. 2016;77:e1564–e1569.

    PubMed  PubMed Central  Google Scholar 

  45. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tariot PN, Mack JL, Patterson MB, Edland SD, Weiner MF, Fillenbaum G, et al. The behavior rating scale for dementia of the Consortium to Establish a Registry for Alzheimer’s Disease. Am J Psychiatry. 1995;152:1349–57.

    CAS  PubMed  Google Scholar 

  47. Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, et al. Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. J Neuropsychiatry Clin Neurosci. 2000;12:233–9.

    CAS  PubMed  Google Scholar 

  48. Boada M, Cejudo JC, Tarraga L, Lopez OL, Kaufer D. Neuropsychiatric Inventory Questionnaire (NPI-Q): Spanish validation of a brief clinical form of the Neuropsychiatric inventory (NPI). Neurologia. 2002;17:317–23.

    CAS  PubMed  Google Scholar 

  49. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–14.

    CAS  PubMed  Google Scholar 

  50. Overall JE, Gorham DR. The brief psychiatric rating scale. Psychol. Rep. 1962;10:799–812.

    Google Scholar 

  51. Zubenko GS, Rosen J, Sweet RA, Mulsant BH, Rifai AH. Impact of psychiatric hospitalization on behavioral complications of Alzheimer’s disease. Am J Psychiatry. 1992;149:1484–91.

    CAS  PubMed  Google Scholar 

  52. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–72.

    CAS  PubMed  Google Scholar 

  53. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    CAS  PubMed  Google Scholar 

  54. Bacanu SA, Devlin B, Chowdari KV, DeKosky ST, Nimgaonkar VL, Sweet RA. Linkage analysis of Alzheimer disease with psychosis. Neurology. 2002;59:118–20.

    CAS  PubMed  Google Scholar 

  55. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Creese B, Vassos E, Bergh S, Athanasiu L, Johar I, Rongve A, et al. Examining the association between genetic liability for schizophrenia and psychotic symptoms in Alzheimer’s disease. Transl Psychiatry. 2019;9:273. https://doi.org/10.1038/s41398-019-0592-5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. https://doi.org/10.1086/519795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. https://doi.org/10.1186/s13742-015-0047-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee AB, Luca D, Klei L, Devlin B, Roeder K. Discovering genetic ancestry using spectral graph theory. Genet. Epidemiol. 2010;34:51–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang L, Zhang W, Li Q. AssocTests: an R package for genetic association. Studies. 2020;94:26. https://doi.org/10.18637/jss.v094.i05.

    Article  Google Scholar 

  61. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83. https://doi.org/10.1038/ng.3643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.

    Article  CAS  Google Scholar 

  63. Loh PR, Danecek P, Palamara PF, Fuchsberger C, Y AR, H KF, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48:1443–8. https://doi.org/10.1038/ng.3679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics, C. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5. https://doi.org/10.1038/ng.3211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33:272–9. https://doi.org/10.1093/bioinformatics/btw613.

    Article  CAS  PubMed  Google Scholar 

  67. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    CAS  PubMed  Google Scholar 

  68. Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9. https://doi.org/10.1038/s41588-018-0059-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803. https://doi.org/10.1038/s41588-019-0397-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219. https://doi.org/10.1371/journal.pcbi.1004219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Network & Pathway Analysis Subgroup of Psychiatric Genomics, C Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18:199–209. https://doi.org/10.1038/nn.3922.

    Article  CAS  Google Scholar 

  72. de Leeuw CA, Neale BM, Heskes T, Posthuma D. The statistical properties of gene-set analysis. Nat Rev Genet. 2016;17:353–64. https://doi.org/10.1038/nrg.2016.29.

    Article  CAS  PubMed  Google Scholar 

  73. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52. https://doi.org/10.1038/ng.3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5. https://doi.org/10.1038/ng.2653.

    Article  CAS  Google Scholar 

  75. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004.

    CAS  PubMed  Google Scholar 

  76. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, McLaren PJ, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet. 2012;44:623–30. https://doi.org/10.1038/ng.2303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics. 1995;29:311–22. https://doi.org/10.1006/geno.1995.9003.

    Article  CAS  PubMed  Google Scholar 

  78. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30. https://doi.org/10.1038/s41588-019-0358-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    PubMed Central  Google Scholar 

  80. Gandal, MJ, Zhang, P, Hadjimichael, E, Walker, RL, Chen, C, Liu, S et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362, https://doi.org/10.1126/science.aat8127.

  81. Tushev G, Glock C, Heumüller M, Biever A, Jovanovic M, Schuman EM. Alternative 3’ UTRs Modify the Localization, Regulatory Potential, Stability, and Plasticity of mRNAs in. Neuronal Compartments. Neuron. 2018;98:495–511.e496. https://doi.org/10.1016/j.neuron.2018.03.030.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47. https://doi.org/10.1523/JNEUROSCI.1860-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci. 2016;19:1210–7. https://doi.org/10.1038/nn.4351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009;462:915–9. https://doi.org/10.1038/nature08389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Greiner-Tollersrud L, Berg T, Stensland HM, Evjen G, Greiner-Tollersrud OK. Bovine brain myelin glycerophosphocholine choline phosphodiesterase is an alkaline lysosphingomyelinase of the eNPP-family, regulated by lysosomal sorting. Neurochem Res. 2013;38:300–10. https://doi.org/10.1007/s11064-012-0921-z.

    Article  CAS  PubMed  Google Scholar 

  86. Sakagami H, Aoki J, Natori Y, Nishikawa K, Kakehi Y, Natori Y, et al. Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family. J Biol Chem. 2005;280:23084–93. https://doi.org/10.1074/jbc.M413438200.

    Article  CAS  PubMed  Google Scholar 

  87. Chun J, Brinkmann V. A mechanistically novel, first oral therapy for multiple sclerosis: the development of fingolimod (FTY720, Gilenya). Discov Med. 2011;12:213–28.

    PubMed  PubMed Central  Google Scholar 

  88. Darios FD, Jorgacevski J, Flasker A, Zorec R, Garcia-Martinez V, Villanueva J, et al. Sphingomimetic multiple sclerosis drug FTY720 activates vesicular synaptobrevin and augments neuroendocrine secretion. Sci Rep. 2017;7:5958. https://doi.org/10.1038/s41598-017-05948-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krivinko J, Erickson S, MacDonald M, Garver M, Sweet R. Fingolimod treatment rescues psychosis-associated behavioral aberrations in Appswe/Psen1de9 mice. The Am J of Geriatr Psychiatry. 2018;26:S144–S145. https://doi.org/10.1016/j.jagp.2018.01.175.

    Article  Google Scholar 

  90. Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell. 2003;113:435–44. https://doi.org/10.1016/s0092-8674(03)00347-7.

    Article  CAS  PubMed  Google Scholar 

  91. Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell. 2003;113:445–56. https://doi.org/10.1016/s0092-8674(03)00348-9.

    Article  CAS  PubMed  Google Scholar 

  92. Holder PG, Jones LC, Drake PM, Barfield RM, Banas S, de Hart GW, et al. Reconstitution of formylglycine-generating enzyme with copper(II) for aldehyde tag conversion. J Biol Chem. 2015;290:15730–45. https://doi.org/10.1074/jbc.M115.652669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Seranova E, Connolly KJ, Zatyka M, Rosenstock TR, Barrett T, Tuxworth RI, et al. Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem. 2017;61:733–49. https://doi.org/10.1042/EBC20170055.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Di Malta C, Fryer JD, Settembre C, Ballabio A. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci USA. 2012;109:E2334–2342. https://doi.org/10.1073/pnas.1209577109.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wolfe, CM, Fitz, NF, Nam, KN, Lefterov, I & Koldamova, R The Role of APOE and TREM2 in Alzheimer’s Disease-Current Understanding and Perspectives. Int J Mol Sci. 2018;20, https://doi.org/10.3390/ijms20010081.

  96. Sweet RA, Macdonald ML, Kirkwood CM, Ding Y, Schempf T, Jones-Laughner J, et al. Apolipoprotein E*4 (APOE*4) genotype is associated with altered levels of glutamate signaling proteins and synaptic coexpression networks in the prefrontal cortex in mild to moderate Alzheimer disease. Mol Cell Proteomics. 2016;15:2252–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Krivinko JM, Erickson SL, Ding Y, Sun Z, Penzes P, MacDonald ML, et al. Synaptic proteome compensation and resilience to psychosis in Alzheimer’s disease. Am J Psychiatry. 2018;175:999–1009. https://doi.org/10.1176/appi.ajp.2018.17080858.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pollock BG, Mulsant BH, Rosen J, Mazumdar S, Blakesley RE, Houck PR, et al. A double-blind comparison of citalopram and risperidone for the treatment of behavioral and psychotic symptoms associated with dementia. Am J Geriatr Psychiatry. 2007;15:942–52.

    PubMed  Google Scholar 

  99. Pollock BG, Mulsant BH, Rosen J, Sweet RA, Mazumdar S, Bharucha A, et al. A randomized, double-blind, placebo-controlled comparison of citalopram and perphenazine for the acute treatment of psychosis and behavioral disturbances associated with dementia. Am J of Psychiatry. 2002;159:460–5.

    Google Scholar 

  100. Murray PS, Kumar S, DeMichele-Sweet MA, Sweet RA. Psychosis in Alzheimer’s Disease. Biol Psychiatry. 2014;75:542–52.

    PubMed  Google Scholar 

  101. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11:1006–12. https://doi.org/10.1016/s1474-4422(12)70191-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the following federal grants: AG027224 (RAS), MH116046 (RAS), MH057881 (BD), AG030653 (MIK), AG041718 (MIK), AG066468 (OLL). Authors in the NIA-LOAD Family Based Study Consortium are Tatiana Foroud, M. Ilyas Kamboh, Oscar L. Lopez, and Richard Mayeux. Authors in the Alzheimer’s Disease Genetics Consortium (ADGC) are Tatiana Foroud, Richard Mayeux, and Robert A. Sweet. A complete list of contributing individuals, consortia, and their grant support can be found in Supplementary Acknowledgements.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Each author is expected to have made substantial contributions: (1) to the conception or design of the work; RAS, BD, MIK, CB, OLL. (2) to the acquisition, analysis, or interpretation of data; MAAD-S, LK, BC, JCH, EAW, LM, RS, IH, SM-G, LT, MB, EA-M, SV, YL, BH, DA, GS, SB, AR, IS, HKS, BE, ES, OAA, SD, LA, DS, BB, DA, GF, PM, AS, DDR, AP, JW, RM, TF, AR, CB, PH, OLL, MIK, BD, RAS. (3) to the creation of new software used in the work; YL. (4) have drafted the manuscript or substantively revised it. MAAD-S, JCH, LK, BC, LM, CB, PH, MIK, BD, RAS. Each author has approved the submitted version (and any substantially modified version that involves the author’s contribution to the study) and has agreed both to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Corresponding author

Correspondence to Robert A. Sweet.

Ethics declarations

Conflict of interest

YL and BH are currently employed by and holding stock in Eli Lilly and Company. CB reports grants and personal fees from Acadia pharmaceutical company, grants and personal fees from Lundbeck, personal fees from Roche, personal fees from Otsuka, personal fees from Biogen, personal fees from Eli Lilly, personal fees from Novo Nordisk, personal fees from AARP, grants and personal fees from Synexus, personal fees from Exciva, outside the submitted work. OLL served as a consultant for Grifols, Inc. IS has been investigator in the drug trial Boehringer‐Ingelheim 1346.0023. OAA is a consultant to HEALTHLYTIX, speaker honoraria from Lundbeck. AS is or has been a consultant to or has received honoraria or grants unrelated to the present work from: Abbott, Abbvie, Angelini, Astra Zeneca, Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi, Servier. MB is a consultant to GRIFOLS, BIOGEN, ROCHE, LILLY, CORTEXYME, ARACLON, MERCK. Grants La Caixa, IMI, ISCIII. DS reports personal fees from Biogen.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the NIA-LOAD Family Based Study Consortium and Alzheimer’s Disease Genetics Consortium (ADGC) are listed in Supplementary information.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeMichele-Sweet, M.A.A., Klei, L., Creese, B. et al. Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease. Mol Psychiatry 26, 5797–5811 (2021). https://doi.org/10.1038/s41380-021-01152-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01152-8

This article is cited by

Search

Quick links