Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence that microRNAs are associated with translating messenger RNAs in human cells

Abstract

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally by binding the 3′ untranslated regions of target mRNAs. We examined the subcellular distribution of three miRNAs in exponentially growing HeLa cells and found that the vast majority are associated with mRNAs in polysomes. Several lines of evidence indicate that most of these mRNAs, including a known miRNA-regulated target (KRAS mRNA), are actively being translated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miRNAs sediment with polysomes in HeLa cell cytoplasmic extracts.
Figure 2: miRNAs are associated with mRNAs in polysomes in HeLa cells.
Figure 3: miRNAs are associated with mRNAs engaged in active translation.
Figure 4: Parallel polysomal distribution of miRNAs and mRNAs after exposure to and recovery from hypertonic stress.
Figure 5: KRAS mRNA sediments with polysomes and is associated with translationally competent ribosomes.

Similar content being viewed by others

References

  1. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Pillai, R.S. MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 1753–1761 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zamore, P.D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science 309, 1519–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Farh, K.K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Seggerson, K., Tang, L. & Moss, E.G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Petersen, C.P., Bordeleau, M.E., Pelletier, J. & Sharp, P.A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Pillai, R.S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol. 26, 2965–2975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1261–1266 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jakymiw, A. et al. Disruption of GW bodies impairs mammalian RNA interference. Nat. Cell Biol. 7, 1267–1274 (2005).

    Article  PubMed  Google Scholar 

  19. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Chu, C.Y. & Rana, T.M. Translation repression in human cells by microRNA-induced gene slencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coller, J. & Parker, R. General translational repression by activators of mRNA decapping. Cell 122, 875–886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Davis, S., Lollo, B., Freier, S. & Esau, C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 34, 2294–2304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Taber, R., Rekosh, D. & Baltimore, D. Effect of pactamycin on synthesis of poliovirus proteins: a method for genetic mapping. J. Virol. 8, 395–401 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morley, S.J. & Naegele, S. Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J. Biol. Chem. 277, 32855–32859 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, S.M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Caudy, A.A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    CAS  PubMed  Google Scholar 

  32. Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Nelson, P.T., Hatzigeorgiou, A.G. & Mourelatos, Z. miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10, 387–394 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Djikeng, A., Shi, H., Tschudi, C., Shen, S. & Ullu, E. An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9, 802–808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl. Acad. Sci. USA 101, 360–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Lewis, B.P., Shih, I.-h., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediciton of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Bartel, D.P. & Chen, C.-Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Nilsen, T.W. & Maroney, P.A. Translational efficiency of c-myc mRNA in Burkitt lymphoma cells. Mol. Cell. Biol. 4, 2235–2238 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for helpful comments. This work was supported by grants from the US National Institutes of Health to T.W.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy W Nilsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroney, P., Yu, Y., Fisher, J. et al. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13, 1102–1107 (2006). https://doi.org/10.1038/nsmb1174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing