Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human let-7a miRNA blocks protein production on actively translating polyribosomes

Abstract

MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level through base-pairing to 3′ untranslated regions (UTRs) of messenger RNAs. The mechanism by which human let-7a miRNA regulates mRNA translation was examined in HeLa cells expressing reporter mRNAs containing the Caenorhabditis elegans lin-41 3′ UTR. let-7a miRNA strongly repressed translation, yet the majority of control and lin-41–bearing RNAs sedimented with polyribosomes in sucrose gradients; these polyribosomes, together with let-7a miRNA and the miRISC protein AGO, were released from those structures by puromycin. RNA containing the lin-41 3′ UTR and an iron response element in the 5′ UTR sedimented with polysomes when cells were incubated with iron, but showed ribosome run-off when the iron was chelated. These data indicate that let-7a miRNA inhibits actively translating polyribosomes. Nascent polypeptide coimmunoprecipitation experiments further suggest that let-7a miRNA interferes with the accumulation of growing polypeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: let-7a miRNA–mediated translational repression in HeLa cells.
Figure 2: lin-41–containing mRNA and let-7a miRNA are associated with translating polyribosomes.
Figure 3: Block of translation initiation results in ribosome run-off from repressed mRNAs.
Figure 4: Polyribosomes are not coimmunoprecipitated when under miRNA control.

Similar content being viewed by others

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ambros, V. The function of animal microRNAs. Nature 431, 350–355 (2004).

    CAS  PubMed  Google Scholar 

  3. Chen, P.Y. & Meister, G. microRNA-guided posttranscriptional gene regulation. Biol. Chem. 386, 1205–1218 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Esquela-Kerscher, A. & Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Slack, F.J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Großhans, H., Johnson, T., Reinert, K.L., Gerstein, M. & Slack, F.J. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8, 321–330 (2005).

    Article  PubMed  Google Scholar 

  8. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, S.M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Seggerson, K., Tang, L. & Moss, E.G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, J. et al. Identification of many microRNAs that copurify with polysomes in mammalian neurons. Proc. Natl. Acad. Sci. USA 101, 360–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Nelson, P.T., Hatzigeorgiou, A.G. & Mourelatos, Z. miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10, 387–394 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petersen, C.P., Bordeleau, M.E., Pelletier, J. & Sharp, P.A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Pillai, R.S. et al. Inhibition of translational initation by let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vella, M.C., Reinert, K. & Slack, F.J. Architecture of a validated microRNA:target interaction. Chem. Biol. 11, 1619–1623 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenlylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blobel, G. & Sabatini, D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc. Natl. Acad. Sci. USA 68, 390–394 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, L. & Belasco, J.G. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 25, 9198–9208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carmell, M.A., Xuan, Z., Zhang, M.Q. & Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hentze, M.W. & Kühn, L.C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93, 8175–8182 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muckenthaler, M., Gray, N.K. & Hentze, M.W. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell 2, 383–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Gu, S. & Rossi, J.J. Uncoupling of RNAi from active translation in mammalian cells. RNA 11, 38–44 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila. Mol. Cell. Biol. 26, 2965–2975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chu, C.Y. & Rana, T.M. Translational repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLOS Biol. 4, 1122–1136 (2006).

    Article  CAS  Google Scholar 

  31. Hundley, H.A., Walter, W., Bairstow, S. & Craig, E.A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Wiedmann, B., Sakai, H., Davis, T.A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Clark, I.E., Wyckoff, D. & Gavis, E.R. Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism. Curr. Biol. 10, 1311–1315 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Markesich, D.C., Gajewski, K.M., Nazimiec, M.E. & Beckingham, K. Bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery. Development 127, 559–572 (2000).

    CAS  PubMed  Google Scholar 

  35. Braat, A.K., Yan, N., Arn, E., Harrison, D. & Macdonald, P.M. Localization-dependent oskar protein accumulation: control after the initiation of translation. Dev. Cell 7, 125–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Turner, G.C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science 289, 2117–2120 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hutvágner, G., Simard, M.J., Mello, C.C. & Zamore, P.D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, 465–475 (2004).

    Article  Google Scholar 

  38. Ruan, H., Brown, C.Y. & Morris, D.R. Analysis of ribosome loading onto mRNA species: implications for translational control. in mRNA Formation and Function (ed. Richter, J.D.) 305–321 (Academic Press, New York, 1997).

    Chapter  Google Scholar 

  39. Schmittgen, T.D. et al. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285, 194–204 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Mello for discussion and Z. Mourelatos (University of Pennsylvania) for kindly providing the monoclonal antibody to AGO, 28A. S.N. was supported by a fellowship of the Max Planck Society and by European Molecular Biology Organization fellowship ALTF 995-2004. M.J.S. was a Canadian Institutes of Health Research postdoctoral fellow. This work was supported by grants from the US National Institutes of Health (GM46779 and HD37267).

Author information

Authors and Affiliations

Authors

Contributions

S.N. performed all the experiments, M.J.S. cloned the lin-41 3′ UTR and S.N. and J.D.R. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Joel D Richter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nottrott, S., Simard, M. & Richter, J. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13, 1108–1114 (2006). https://doi.org/10.1038/nsmb1173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing