Abstract
Intuitively, decisions should always improve with more time for the accumulation of evidence, yet psychophysical data show a limit of 200–300 ms for many perceptual tasks. Here, we consider mechanisms that favour such rapid information processing in vision and olfaction. We suggest that the brain limits some types of perceptual processing to short, discrete chunks (for example, eye fixations and sniffs) in order to facilitate the construction of global sensory images.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Mazurek, M. E., Roitman, J. D., Ditterich, J. & Shadlen, M. N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).
Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R. & Tank, D. W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nature Neurosci. 4, 184–193 (2001).
Brody, C. D., Romo, R. & Kepecs, A. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr. Opin. Neurobiol. 13, 204–211 (2003).
Goldman, M. S., Levine, J. H., Major, G., Tank, D. W. & Seung, H. S. Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb. Cortex 13, 1185–1195 (2003).
Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).
Wang, X. J. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 455–463 (2001).
Koulakov, A. A., Raghavachari, S., Kepecs, A. & Lisman, J. E. Model for a robust neural integrator. Nature Neurosci. 5, 775–782 (2002).
Luce, R. D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, New York, 1986).
Ratcliff, R. & Smith, P. L. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111, 333–367 (2004).
Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).
Laming, D. R. Information Theory of Choice–Reaction Time (Academic, New York, 1968).
Ratcliff, R., Gomez, P. & McKoon, G. A diffusion model account of the lexical decision task. Psychol. Rev. 111, 159–182 (2004).
Stone, M. Models for choice reaction time. Psychometrika 25, 251–260 (1960).
Burr, D. C. & Santoro, L. Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Res. 41, 1891–1899 (2001).
Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).
Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).
Palmer, J., Huk, A. C. & Shadlen, M. N. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5, 367–404 (2005).
Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1996).
Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).
Shadlen, M. N. & Gold, J. I. in The Cognitive Neurosciences (ed. Gazzaniga, M.) 1229–1241 (MIT Press, Cambridge, 2004).
Smith, P. L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).
Schall, J. D. Neural correlates of decision processes: neural and mental chronometry. Curr. Opin. Neurobiol. 13, 182–186 (2003).
Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).
Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).
Gold, J. I. & Shadlen, M. N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003).
Watson, A. B. Probability summation over time. Vision Res. 19, 515–522 (1979).
Karpov, A. P. in Neural Mechanisms of Goal-Directed Behavior (eds Thompson, R. F., Hicks, L. H. & Shvyrkov, V. B.) 273–282 (Academic, New York, 1980).
Bodyak, N. & Slotnick, B. Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem. Senses 24, 637–645 (1999).
Goldberg, S. J. & Moulton, D. G. Olfactory bulb responses telemetered during an odor discrimination task in rats. Exp. Neurol. 96, 430–442 (1987).
Slotnick, B. M. in Comparative Perception (eds Stebbins, W. & Berkley, M.) 155–244 (Wiley, New York, 1990).
Uchida, N. & Mainen, Z. F. Speed and accuracy of olfactory discrimination in the rat. Nature Neurosci. 6, 1224–1229 (2003).
Abraham, N. M. et al. Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876 (2004).
Khan, R. M. & Sobel, N. Neural processing at the speed of smell. Neuron 44, 744–747 (2004).
Zariwala, H., Uchida, N. & Mainen, Z. F. A study of speed and performance accuracy in an olfactory discrimination task. Soc. Neurosci. Abstr. 278.9 (2005).
VanRullen, R. & Thorpe, S. J. The time course of visual processing: from early perception to decision-making. J. Cogn. Neurosci. 13, 454–461 (2001).
Johnson, J. S. & Olshausen, B. A. Timecourse of neural signatures of object recognition. J. Vis. 3, 499–512 (2003).
Bacon-Mace, N., Mace, M. J., Fabre-Thorpe, M. & Thorpe, S. J. The time course of visual processing: backward masking and natural scene categorisation. Vision Res. 45, 1459–1469 (2005).
Keesey, U. T. Effects of involuntary eye movements on visual acuity. J. Opt. Soc. Am. 50, 769–774 (1960).
Nachmias, J. Effect of exposure duration on visual contrast sensitivity with square-wave gratings. J. Opt. Soc. Am. 57, 421–427 (1967).
Tulunay-Keesey, U. & Jones, R. M. The effect of micromovements of the eye and exposure duration on contrast sensitivity. Vision Res. 16, 481–488 (1976).
De Bruyn, B. & Orban, G. A. Human velocity and direction discrimination measured with random dot patterns. Vision Res. 28, 1323–1335 (1988).
Snowden, R. J. & Braddick, O. J. The temporal integration and resolution of velocity signals. Vision Res. 31, 907–914 (1991).
Uka, T. & DeAngelis, G. C. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23, 3515–3530 (2003).
Harwerth, R. S., Fredenburg, P. M. & Smith, E. L. Temporal integration for stereoscopic vision. Vision Res. 43, 505–517 (2003).
Shortess, G. K. & Krauskopf, J. Role of involuntary eye-movements in stereoscopic acuity. J. Opt. Soc. Am. 51, 555–559 (1961).
Laing, D. G. Identification of single dissimilar odors is achieved by humans with a single sniff. Physiol. Behav. 37, 163–170 (1986).
Laing, D. G., Eddy, A., Francis, G. W. & Stephens, L. Evidence for the temporal processing of odor mixtures in humans. Brain Res. 651, 317–328 (1994).
Hick, W. E. On the rate of gain of information. Q. J. Exp. Psychol. 4, 11–26 (1952).
Müller, J. R., Metha, A. B., Krauskopf, J. & Lennie, P. Information conveyed by onset transients in responses of striate cortical neurons. J. Neurosci. 21, 6978–6990 (2001).
Osborne, L. C., Bialek, W. & Lisberger, S. G. Time course of information about motion direction in visual area MT of macaque monkeys. J. Neurosci. 24, 3210–3222 (2004).
Oram, M. W. & Perrett, D. I. Time course of neural responses discriminating different views of the face and head. J. Neurophysiol. 68, 70–84 (1992).
Tovee, M. J., Rolls, E. T., Treves, A. & Bellis, R. P. Information encoding and the responses of single neurons in the primate temporal visual cortex. J. Neurophysiol. 70, 640–654 (1993).
Heller, J., Hertz, J. A., Kjaer, T. W. & Richmond, B. J. Information flow and temporal coding in primate pattern vision. J. Comput. Neurosci. 2, 175–193 (1995).
Buracas, G. T., Zador, A. M., DeWeese, M. R. & Albright, T. D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959–969 (1998).
Cain, W. S. Odor intensity after self-adaptation and cross-adaptation. Psychophysics 7, 271–275 (1969).
Ekman, G., Berglund, B., Berglund, U. & Lindvall, T. Perceived intensity of odor as a function of time of adaptation. Scand. J. Psychol. 8, 177–187 (1967).
Pryor, G. T., Steinmet, G. & Stone, H. Changes in absolute detection threshold and in subjective intensity of suprathreshold stimuli during olfactory adaptation and recovery. Percept. Psychophys. 8, 331–335 (1970).
Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).
Leinders-Zufall, T., Greer, C. A., Shepherd, G. M. & Zufall, F. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J. Neurosci. 18, 5630–5639 (1998).
Getchell, T. V. & Shepherd, G. M. Adaptive properties of olfactory receptors analysed with odour pulses of varying durations. J. Physiol. (Lond.) 282, 541–560 (1978).
Friedrich, R. W. & Laurent, G. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–894 (2001).
Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).
Friedrich, R. W. & Laurent, G. Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. J. Neurophysiol. 91, 2658–2669 (2004).
Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).
Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).
Wang, X. J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).
Wong, K. F. & Wang, X. J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).
Smith, P. L. Psychophysically principled models of visual simple reaction time. Psychol. Rev. 102, 567–593 (1995).
Ratcliff, R. & Rouder, J. F. Modeling response times for two-choice decisions. Psychol Sci 9, 347–356 (1998).
Ratcliff, R. A theory of order relation in perceptual matching. Psychol. Rev. 88, 212–225 (1981).
Busemeyer, J. R. & Townsend, J. T. Decision field theory: a dynamic–cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100, 432–459 (1993).
Cook, E. P. & Maunsell, J. H. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nature Neurosci. 5, 985–994 (2002).
Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).
Irwin, D. E. Information integration across saccadic eye movements. Cognit. Psychol. 23, 420–456 (1991).
Nakayama, K. in Vision: Coding and Efficiency (ed. Blakemore, C.) 411–422 (Cambridge Univ. Press, 1990).
O'Regan, J. K. & Noe, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001).
Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124, 372–422 (1998).
Ahissar, E. & Arieli, A. Figuring space by time. Neuron 32, 185–201 (2001).
Rensink, R. A. Change detection. Annu. Rev. Psychol. 53, 245–277 (2002).
Melcher, D. & Morrone, M. C. Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature Neurosci. 6, 877–881 (2003).
O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).
Laing, D. G. Optimum perception of odor intensity by humans. Physiol. Behav. 34, 569–574 (1985).
Laing, D. G. Natural sniffing gives optimum odour perception for humans. Perception 12, 99–117 (1983).
Wise, P. M. & Cain, W. S. Latency and accuracy of discriminations of odor quality between binary mixtures and their components. Chem. Senses 25, 247–265 (2000).
Spors, H. & Grinvald, A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34, 301–315 (2002).
VanRullen, R. & Koch, C. Is perception discrete or continuous? Trends Cogn. Sci. 7, 207–213 (2003).
Cang, J. & Isaacson, J. S. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci. 23, 4108–4116 (2003).
Margrie, T. W. & Schaefer, A. T. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J. Physiol. (Lond.) 546, 363–374 (2003).
Buonviso, N., Amat, C. & Litaudon, P. Respiratory modulation of olfactory neurons in the rodent brain. Chem. Senses 31, 145–154 (2006).
Kepecs, A., Uchida, N. & Mainen, Z. F. The sniff as a unit of olfactory processing. Chem. Senses 31, 167–179 (2006).
Yabus, A. Eye movements and Vision (Plenum, New York, 1967).
Hines, D. J. & Whishaw, I. Q. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Eur. J. Neurosci. 22, 2363–2375 (2005).
Marks, L. Sensory Processes: The New Psychophysics (Academic, New York, 1974).
Wickelgren, W. Speed–accuracy tradeoff and information processing dynamics. Acta Psychologica 41, 67–85 (1977).
Acknowledgements
We thank M. R. DeWeese for discussions and comments on an earlier version of this manuscript. The original research of the authors was supported by a grant from the National Institute on Deafness and Other Communication Disorders (Z.F.M.) and fellowships from the Japan Society for the Promotion of Science, the Cold Spring Harbor Laboratory Association (N.U.) and the Swartz foundation (Z.F.M., N.U. and A.K.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Uchida, N., Kepecs, A. & Mainen, Z. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 7, 485–491 (2006). https://doi.org/10.1038/nrn1933
Issue Date:
DOI: https://doi.org/10.1038/nrn1933
This article is cited by
-
LEDA-Localized-EEG Dynamics Analyzer: a MATLAB-Based Innovative Toolbox for Analysis of EEG Source Dynamics
Journal of Signal Processing Systems (2021)
-
The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs
Nature Communications (2020)
-
Retronasal Habituation: Characterization and Impact on Flavor Perception Using Time-Intensity
Chemosensory Perception (2020)
-
The mechanistic foundation of Weber’s law
Nature Neuroscience (2019)
-
Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans
Scientific Reports (2018)