Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

TREM2 variants: new keys to decipher Alzheimer disease pathogenesis

Abstract

Genome-wide association studies have identified rare variants of the gene that encodes triggering receptor expressed on myeloid cells 2 (TREM2) — an immune receptor that is found in brain microglia — as risk factors for non-familial Alzheimer disease (AD). Furthermore, animal studies have indicated that microglia have an important role in the brain response to amyloid-β (Aβ) plaques and that TREM2 variants may have an impact on such a function. We discuss how TREM2 may control the microglial response to Aβ and its impact on microglial senescence, as well as the interaction of TREM2 with other molecules that are encoded by gene variants associated with AD and the hypothetical consequences of the cleavage of TREM2 from the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TREM2 signalling pathways.
Figure 2: Potential models of TREM2 function in microglial response to Alzheimer disease.

Similar content being viewed by others

References

  1. Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Bertram, L., Parrado, A. R. & Tanzi, R. E. TREM2 and neurodegenerative disease. N. Engl. J. Med. 369, 1565 (2013).

    PubMed  Google Scholar 

  4. Reitz, C. & Mayeux, R. TREM2 and neurodegenerative disease. N. Engl. J. Med. 369, 1564–1565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benitez, B. A. et al. TREM2 is associated with the risk of Alzheimer's disease in Spanish population. Neurobiol. Aging 34, 1711.e15–1711.e17 (2013).

    Article  CAS  Google Scholar 

  6. Slattery, C. et al. Trem2 variants increase risk of typical early-onset Alzheimer's disease but not of prion or frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 85, e3 (2014).

    Article  Google Scholar 

  7. Ruiz, A. et al. Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer's disease and frontotemporal dementia. Neurobiol. Aging 35, 444.e1–444.e4 (2014).

    Article  CAS  Google Scholar 

  8. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulrich, J. D. et al. Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2. Mol. Neurodegener. 9, 20 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Jay, T. R. et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med. 212, 287–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klesney-Tait, J., Turnbull, I. R. & Colonna, M. The TREM receptor family and signal integration. Nat. Immunol. 7, 1266–1273 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ford, J. W. & McVicar, D. W. TREM and TREM-like receptors in inflammation and disease. Curr. Opin. Immunol. 21, 38–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmid, C. D. et al. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J. Neurochem. 83, 1309–1320 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cella, M. et al. Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J. Exp. Med. 198, 645–651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paloneva, J. et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J. Exp. Med. 198, 669–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Humphrey, M. B. et al. TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J. Bone Miner. Res. 21, 237–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, K. et al. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J. Exp. Med. 212, 681–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turnbull, I. R. et al. Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Seno, H. et al. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc. Natl Acad. Sci. USA 106, 256–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Daws, M. R., Lanier, L. L., Seaman, W. E. & Ryan, J. C. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur. J. Immunol. 31, 783–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bouchon, A., Hernandez-Munain, C., Cella, M. & Colonna, M. A. DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji, J. D. et al. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-γ in human osteoclast precursors. J. Immunol. 183, 7223–7233 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Daniel, B. et al. The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages. Genes Dev. 28, 1562–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lefterov, I. et al. RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment. Neurobiol. Dis. 82, 132–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daws, M. R. et al. Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 171, 594–599 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Cannon, J. P., O'Driscoll, M. & Litman, G. W. Specific lipid recognition is a general feature of CD300 and TREM molecules. Immunogenetics 64, 39–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng, Q. et al. TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci. Signal. 3, ra38 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Otero, K. et al. TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J. Immunol. 188, 2612–2621 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi, K., Rochford, C. D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melchior, B. et al. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer's disease. ASN Neuro 2, e00037 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Forabosco, P. et al. Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiol. Aging 34, 2699–2714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamerman, J. A. et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Klunemann, H. H. et al. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP1 2 and TREM2. Neurology 64, 1502–1507 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Paloneva, J. et al. CNS manifestations of Nasu–Hakola disease: a frontal dementia with bone cysts. Neurology 56, 1552–1558 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77sr71 (2011).

    Google Scholar 

  38. Tanzi, R. E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006296 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Heneka, M. T., Golenbock, D. T. & Latz, E. Innate immunity in Alzheimer's disease. Nat. Immunol. 16, 229–236 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Meyer-Luehmann, M. & Prinz, M. Myeloid cells in Alzheimer's disease: culprits, victims or innocent bystanders? Trends Neurosci. 38, 659–668 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Ransohoff, R. M. & El Khoury, J. Microglia in health and disease. Cold Spring Harb. Perspect. Biol. 8, a020560 (2015).

    Article  PubMed  Google Scholar 

  42. Bertram, L. et al. Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE. Am. J. Hum. Genet. 83, 623–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bradshaw, E. M. et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16, 848–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Griciuc, A. et al. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78, 631–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43, 436–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153, 707–720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Benitez, B. A. et al. Missense variant in TREML2 protects against Alzheimer's disease. Neurobiol. Aging 35, 1510.e19–1510.e26 (2014).

    Article  CAS  Google Scholar 

  51. Replogle, J. M. et al. A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann. Neurol. 77, 469–477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chan, G. et al. CD33 modulates TREM2: convergence of Alzheimer loci. Nat. Neurosci. 18, 1556–1558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. N'Diaye, E. N. et al. TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J. Cell Biol. 184, 215–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang, T. et al. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer's disease. Neuropsychopharmacology 39, 2949–2962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanzi, R. E. TREM2 and risk of Alzheimer's disease — friend or foe? N. Engl. J. Med. 372, 2564–2565 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Rivest, S. TREM2 enables amyloid β clearance by microglia. Cell Res. 25, 535–536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gomez Perdiguero, E., Schulz, C. & Geissmann, F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 61, 112–120 (2013).

    Article  PubMed  Google Scholar 

  58. Greter, M. & Merad, M. Regulation of microglia development and homeostasis. Glia 61, 121–127 (2013).

    Article  PubMed  Google Scholar 

  59. Varvel, N. H. et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc. Natl Acad. Sci. USA 109, 18150–18155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, Y. et al.An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Butovsky, O. et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann. Neurol. 77, 75–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Mildner, A. et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci. 31, 11159–11171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Varvel, N. H. et al. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer's disease. J. Exp. Med. 212, 1803–1809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prokop, S. et al. Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer's disease-like mice. J. Exp. Med. 212, 1811–1818 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, N. et al. Increased expression of TREM2 in peripheral blood of Alzheimer's disease patients. J. Alzheimers Dis. 38, 497–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Streit, W. J., Braak, H., Xue, Q. S. & Bechmann, I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol. 118, 475–485 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hefendehl, J. K. et al. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13, 60–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Streit, W. J. Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci. 29, 506–510 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Otero, K. et al. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nat. Immunol. 10, 734–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wunderlich, P. et al. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and gamma-secretase-dependent intramembranous cleavage. J. Biol. Chem. 288, 33027–33036 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6, 243ra286 (2014).

    Article  CAS  Google Scholar 

  75. Piccio, L. et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131, 3081–3091 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lill, C. M. et al. The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimers Dement. 11, 1407–1416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Wisniewski, T. & Frangione, B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135, 235–238 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E. & Ikeda, K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt–Jakob disease. Brain Res. 541, 163–166 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Atagi, Y. et al. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J. Biol. Chem. 290, 26043–26050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bailey, C. C., DeVaux, L. B. & Farzan, M. The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J. Biol. Chem. 290, 26033–26042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guerreiro, R. J. et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 70, 78–84 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lattante, S. et al. TREM2 mutations are rare in a French cohort of patients with frontotemporal dementia. Neurobiol. Aging 34, 2443.e1–2443.e2 (2013).

    Article  CAS  Google Scholar 

  85. Guerreiro, R. et al. Novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiol. Aging 34, 2890.e1–2890.e5 (2013).

    Article  CAS  Google Scholar 

  86. Cuyvers, E. et al. Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia. Neurobiol. Aging 35, 726.e11–726.e19 (2014).

    Article  CAS  Google Scholar 

  87. Borroni, B. et al. Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol. Aging 35, 934.e7–934.e10 (2014).

    Article  CAS  Google Scholar 

  88. Le Ber, I. et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol. Aging 35, 2419.e23–2419.e25 (2014).

    Article  CAS  Google Scholar 

  89. Cady, J. et al. TREM2 variant p. R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71, 449–453 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rayaprolu, S. et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease. Mol. Neurodegener. 8, 19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thelen, M. et al. Investigation of the role of rare TREM2 variants in frontotemporal dementia subtypes. Neurobiol. Aging 35, 2657.e13–2657.e19 (2014).

    Article  CAS  Google Scholar 

  92. Cantoni, C. et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 129, 429–447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sieber, M. W. et al. Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS ONE 8, e52982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kawabori, M. et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 35, 3384–3396 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takahashi, K., Prinz, M., Stagi, M., Chechneva, O. & Neumann, H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 4, e124 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Piccio, L. et al. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol. 37, 1290–1301 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Stefano, L. et al. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J. Neurochem. 110, 284–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Takegahara, N. et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat. Cell Biol. 8, 615–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Hsieh, C. L. et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem. 109, 1144–1156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Gilfillan for helpful comments. M.C. is supported by the US National Institutes of Health (NIH) 1RF1AG051485-01 and the Cure Alzheimer disease Fund. Y.W. is supported by the Lilly Innovation Fellowship Award (Eli Lilly and Company).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Colonna.

Ethics declarations

Competing interests

Y.W. is an employee of Eli Lilly & Co. M.C. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colonna, M., Wang, Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 17, 201–207 (2016). https://doi.org/10.1038/nrn.2016.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing