Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome-scale models of microbial cells: evaluating the consequences of constraints

Key Points

  • The range of allowable biochemical network functions is constrained by natural law. These constraints have been classified as first, physico-chemical constraints; second, topobiological constraints; third, environmental constraints; and fourth, self-imposed regulatory constraints. These constraints can be represented mathematically, and a growing toolbox of computational analysis methods can be used to interrogate network properties.

  • The most common set of computational tools uses linear programming to identify network states that are optimal relative to a defined objective. Flux balance analysis is an example. Optimal states have been successfully used for applications such as predicting the endpoint of adaptive evolutions of Escherichia coli.

  • A more recently developed set of computational tools are used to quantify dependencies between fluxes in the network. For example, correlated reaction sets that form functional units, or unbiased modules, of a metabolic network can be determined.

  • All allowable functional states of a biochemical network can be characterized in one of two ways: first, by enumerating network-based pathways that serve as a basis set from which all possible steady-state flux distributions can be generated or second, by using Monte-Carlo sampling of all possible functional states.

  • The development of this field has matured to the point that phenotypes of altered strains can now be predicted. One such strategy, known as pOptKnock, uses gene deletions (or additions) to align the objective of an altered cell (optimal growth) with the necessary increase in the objective of the metabolic engineer (increased secretion of a particular compound). Adaptive evolution under selective pressure for growth rate is then used to select for strains that should produce the desired product at an increased rate.

  • Future directions in this field include studying the achievable concentration states of biochemical networks, the range of in vivo kinetic constants consistent with high-throughput data and the incorporation of non-linear constraints.

Abstract

Microbial cells operate under governing constraints that limit their range of possible functions. With the availability of annotated genome sequences, it has become possible to reconstruct genome-scale biochemical reaction networks for microorganisms. The imposition of governing constraints on a reconstructed biochemical network leads to the definition of achievable cellular functions. In recent years, a substantial and growing toolbox of computational analysis methods has been developed to study the characteristics and capabilities of microorganisms using a constraint-based reconstruction and analysis (COBRA) approach. This approach provides a biochemically and genetically consistent framework for the generation of hypotheses and the testing of functions of microbial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A growing toolbox for constraint-based analysis.
Figure 2: Determining optimal states.
Figure 3: Flux dependencies.
Figure 4: Characterizing the whole solution space.
Figure 5: Altered solution spaces.
Figure 6: Additional constraints.

Similar content being viewed by others

References

  1. Covert, M. W. et al. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26, 179–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Edwards, J. S., Covert, M. & Palsson, B. Metabolic modelling of microbes: the flux-balance approach. Environ. Microbiol. 4, 133–140 (2002).

    Article  PubMed  Google Scholar 

  3. Reed, J. L. & Palsson, B. O. Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185, 2692–2699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goodsell, D. S. The Machinery of Life (Springer, New York, 1993).

    Book  Google Scholar 

  5. Weisz, P. B. Diffusion and chemical transformation. Science 179, 433–440 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. B. & Leibler, S. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Werner, A. & Heinrich, R. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary “in vivo” state and of time dependent variations under blood preservation conditions. Biomed. Biochim. Acta 44, 185–212 (1985).

    CAS  PubMed  Google Scholar 

  8. Hallows, K. & Knauf, P. in Cellular and Molecular Physiology of Cell Volume Regulation. (ed. Strange, K.) 3–29 (CRC, Boca Raton, 1994).

    Google Scholar 

  9. Lew, V. L. & Bookchin, R. M. Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J. Membr. Biol. 92, 57–74 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Stryer, L. Biochemistry (Freeman, New York, 1988).

    Google Scholar 

  11. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Minton, A. P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hall, D. & Minton, A. P. Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim. Biophys. Acta 1649, 127–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ellis, R. J. & Minton, A. P. Cell biology: join the crowd. Nature 425, 27–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Danchin, A. By way of introduction: some constraints of the cell physics that are usually forgotten, but should be taken into account for in silico genome analysis. Biochimie 78, 299–301 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, J., Zhang, Q. & Schlick, T. Effect of DNA superhelicity and bound proteins on mechanistic aspects of the Hin-mediated and Fis-enhanced inversion. Biophys. J. 85, 804–817 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neidhardt, F. C., Ingraham, J. L. & Schaechter, M. Physiology of the Bacterial Cell (Sinauer Associates, Sunderland, Massachusetts, 1990).

    Google Scholar 

  18. Danchin, A., Guerdoux-Jamet, P., Moszer, I. & Nitschke, P. Mapping the bacterial cell architecture into the chromosome. Philos. Trans. R. Soc. Lond. B 355, 179–190 (2000).

    Article  CAS  Google Scholar 

  19. Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. Ø. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Varma, A. & Palsson, B. O. Metabolic flux balancing: basic concepts, scientific and practical use. Biotechnology 12, 994–998 (1994).

    Article  CAS  Google Scholar 

  21. Brumen, M. & Heinrich, R. A metabolic osmotic model of human erythrocytes. Biosystems 17, 155–169 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Marhl, M., Schuster, S., Brumen, M. & Heinrich, R. Modeling the interrelations between the calcium oscillations and ER membrane potential oscillations. Biophys. Chem. 63, 221–239 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Beard, D. A., Liang, S. D. & Qian, H. Energy balance for analysis of complex metabolic networks. Biophys. J. 83, 79–86 (2002). Introduces the use of thermodynamic constraints to constraint-based analysis methods, resulting in better predictions of ranges of intracellular fluxes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qian, H., Beard, D. A. & Liang, S. D. Stoichiometric network theory for nonequilibrium biochemical systems. Eur. J. Biochem. 270, 415–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Nicholls, D. G. & Ferguson, S. J. Bioenergetics 3 (Academic, San Diego, California, 2002).

    Google Scholar 

  26. Price, N. D., Papin, J. A., Schilling, C. H. & Palsson, B. Ø. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21, 162–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Covert, M. W., Famili, I. & Palsson, B. Ø. Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? Biotechnol. Bioeng. 84, 763–772 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Rockafellar, R. T. Convex Analysis (Princeton Univ. Press, Princeton, 1970).

    Book  Google Scholar 

  29. Famili, I. & Palsson, B. Ø. The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. Biophys. J. 85, 16–26 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Price, N. D., Papin, J. A. & Palsson, B. Ø. Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome Res. 12, 760–769 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Papin, J. A., Price, N. D., Edwards, J. S. & Palsson, B. Ø. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. 215, 67–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Ibarra, R. U., Edwards, J. S. & Palsson, B. Ø. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Edwards, J. S., Ibarra, R. U. & Palsson, B. Ø. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19, 125–130 (2001).

    Article  CAS  Google Scholar 

  34. Varma, A. & Palsson, B. Ø. Predictions for oxygen supply control to enhance population stability of engineered production strains. Biotechnol. Bioeng. 43, 275–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003). Presents a novel method for metabolic engineering by predicting knockout strains in which the objective of the metabolic engineer and the cell are coupled.

    Article  CAS  PubMed  Google Scholar 

  36. Liao, J. C., Hou, S. Y. & Chao, Y. P. Pathway analysis, engineering and physiological considerations for redirecting central metabolism. Biotechnol. Bioeng. 52, 129–140 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Bonarius, H. P. J., Schmid, G. & Tramper, J. Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends Biotechnol. 15, 308–314 (1997).

    Article  CAS  Google Scholar 

  38. Kauffman, K. J., Prakash, P. & Edwards, J. S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003). References 37 and 38 are well-written reviews that provide an introduction to flux balance analysis, one of the most common constraint-based modelling methods.

    Article  CAS  PubMed  Google Scholar 

  39. Papoutsakis, E. T. Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 26, 174–187 (1984).

    Article  CAS  PubMed  Google Scholar 

  40. Majewski, R. A. & Domach, M. M. Simple constrained optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35, 732–738 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Varma, A. & Palsson, B. Ø. Metabolic capabilities of Escherichia coli: II. Optimal growth patterns. J. Theor. Biol. 165, 503–522 (1993).

    Article  CAS  Google Scholar 

  42. Pramanik, J. & Keasling, J. D. Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398–421 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Schilling, C. H. et al. Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol 184, 4582–4593 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raghunathan, A. et al. In silico metabolic model and protein expression of Haemophilus influenzae strain Rd KW20 in rich medium. OMICS 8, 25–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Edwards, J. S. & Palsson, B. Ø. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Famili, I., Forster, J., Nielsen, J. & Palsson, B. Ø. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl Acad. Sci. USA 100, 13134–13139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Forster, J., Famili, I., Palsson, B. Ø. & Nielsen, J. Large-scale evaluation of in silico gene knockouts in Saccharomyces cerevisiae. OMICS 7, 193–202 (2003).

    Article  PubMed  Google Scholar 

  48. Forster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Segre, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002). Presents a new method for predicting metabolic flux distributions of knockout strains, and shows that the predictions matched experimental data better than flux balance analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Varma, A. & Palsson, B. Ø. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Covert, M. W. & Palsson, B. Ø. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–18064 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19, 45–50 (2001).

    Article  CAS  Google Scholar 

  53. Thorneycroft, D., Sherson, S. M. & Smith, S. M. Using gene knockouts to investigate plant metabolism. J. Exp. Bot. 52, 1593–1601 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Bouche, N. & Bouchez, D. Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4, 111–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, S., Phalakornkule, C., Domach, M. M. & Grossmann, I. E. Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Comp. Chem. Eng. 24, 711–716 (2000). First use of MILP to identify alternate equivalent optimal flux distributions in metabolic networks.

    Article  CAS  Google Scholar 

  56. Reed, J. L. & Palsson, B. Ø. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Phalakornkule, C. et al. A MILP-based flux alternative generation and NMR experimental design strategy for metabolic engineering. Metab. Eng. 3, 124–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003). Develops the method of flux variability analysis to study the effects that optimal and suboptimal solutions have on the outcome of MOMA calculations and to identify equivalent pathways in metabolic networks.

    Article  CAS  PubMed  Google Scholar 

  59. Burgard, A. P. & Maranas, C. D. Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82, 670–677 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Varma, A., Boesch, B. W. & Palsson, B. Ø. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Edwards, J. S. & Palsson, B. Ø. Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. 16, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Edwards, J. S., Ramakrishna, R. & Palsson, B. Ø. Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol. Bioeng. 77, 27–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Kauffman, K. J., Pajerowski, J. D., Jamshidi, N., Palsson, B. Ø. & Edwards, J. S. Description and analysis of metabolic connectivity and dynamics in the human red blood cell. Biophys. J. 83, 646–662 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & Maranas, C. D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A. & Palsson, B. Ø. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28, 250–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Schuster, S., Fell, D. A. & Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. 18, 326–332 (2000). A nice introduction to the definition and uses of elementary modes for analysing biochemical networks.

    Article  CAS  Google Scholar 

  67. Schuster, S., Dandekar, T. & Fell, D. A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Schilling, C. H., Schuster, S., Palsson, B. Ø. & Heinrich, R. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol. Prog. 15, 296–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Papin, J. A. et al. Comparison of network-based pathway analysis methods. Trends Biotechnol. 22, 400–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Schuster, S. & Hilgetag, C. On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182 (1994).

    Article  Google Scholar 

  71. Schilling, C. H., Letscher, D. & Palsson, B. Ø. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Klamt, S., Stelling, J., Ginkel, M. & Gilles, E. D. FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19, 261–269 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J. C., Montero, F. & Schuster, S. METATOOL: for studying metabolic networks. Bioinformatics 15, 251–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Klamt, S. & Stelling, J. Combinatorial complexity of pathway analysis in metabolic networks. Mol. Biol. Rep. 29, 233–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Price, N. D., Reed, J. L., Papin, J. A., Famili, I. & Palsson, B. Ø. Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices. Biophys. J. 84, 794–804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E. D. Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Van Dien, S. J. & Lidstrom, M. E. Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol. Bioeng. 78, 296–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Papin, J. A., Price, N. D. & Palsson B. Ø. Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res. 12, 1889–1900 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F. & Pfeiffer, T. Use of network analysis of metabolic systems in bioengineering. Bioprocess Biosyst. Eng. 24, 363–372 (2002).

    Article  CAS  Google Scholar 

  80. Forster, J., Gombert, A. K. & Nielsen, J. A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol. Bioeng. 79, 703–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Carlson, R., Fell, D. & Srienc, F. Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol. Bioeng. 79, 121–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Price, N. D., Reed, J. L., Papin, J. A., Wiback, S. J. & Palsson, B. Ø. Network-based analysis of metabolic regulation in the human red blood cell. J. Theor. Biol. 225, 185–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Wiback, S. J., Mahadevan, R. & Palsson, B. Ø. Reconstructing metabolic flux vectors from extreme pathways: defining the α-spectrum. J. Theor. Biol. 224, 313–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Wiback, S. J., Mahadevan, R. & Palsson, B. Ø. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol. Bioeng. 86, 317–331 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z. N. & Barabasi, A. L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843 (2004). First paper to perform uniform random sampling of the steady-state flux space to analyse the organization of genome-scale metabolic fluxes.

    Article  CAS  PubMed  Google Scholar 

  86. Wiback, S. J., Famili, I., Greenberg, H. J. & Palsson, B. Ø. Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J. Theor. Biol. 228, 437–447 (2004).

    Article  PubMed  Google Scholar 

  87. Fong, S. S., Marciniak, J. Y. & Palsson, B. Ø. Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model. J. Bacteriol. 185, 6400–6408 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fong, S. S. & Palsson, B. Ø. Metabolic gene deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nature Genet. 36, 1056–1058 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. Ø. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Edwards, J. S. & Palsson, B. Ø. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1, 1 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Edwards, J. S. & Palsson, B. Ø. The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl Acad. Sci. USA 97, 5528–5533 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Duarte, N. C., Herrgard, M. J. & Palsson, B. Ø. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Papp, B., Pal, C. & Hurst, L. D. Metabolic network analysis of the causes and elution of enzyme dispensability in yeast. Nature 429, 661–664 (2004). Insightful use of GEMS to demonstrate that the presence of isozymes is better explained by the need for a high flux rate through a reaction, rather than by providing redundancy for an essential function. Explains why a high degree of genes are found to be non-essential under laboratory conditions.

    Article  CAS  PubMed  Google Scholar 

  94. Burgard, A. P. & Maranas, C. D. Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74, 364–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Pharkya, P., Burgard, A. P. & Maranas, C. D. Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84, 887–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Covert, M. & Palsson, B. Ø. Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theor. Biol. 221, 309–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Covert, M. W., Schilling, C. H. & Palsson, B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Price, N. D., Famili, I., Beard, D. A. & Palsson, B. Ø. Extreme pathways and Kirchhoff's second law. Biophys. J. 83, 2879–2882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mahadevan, R., Edwards, J. S. & Doyle, F. J. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Price, N. D., Schellenberger, J. & Palsson, B. Ø. Uniform sampling of steady state flux spaces: means to design experiments and to interpret enzymopathies. Biophsy. J. (In the press).

  101. Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady–State Enzyme Systems (Wiley, New York, 1975).

    Google Scholar 

  102. Gilman, A. G. et al. Overview of the alliance for cellular signaling. Nature 420, 703–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, H. & Snyder, M. “Omic” approaches for unraveling signaling networks. Curr. Opin. Cell Biol. 14, 173–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Graves, P. R. & Haystead, T. A. A functional proteomics approach to signal transduction. Recent Prog. Horm. Res. 58, 1–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Li, J. et al. The molecule pages database. Nature 420, 716–717 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Sivakumaran, S., Hariharaputran, S., Mishra, J. & Bhalla, U. S. The database of quantitative cellular signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics 19, 408–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Walhout, A. J. et al. Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr. Biol. 12, 1952–1958 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Papin, J. A. & Palsson, B. O. The JAK–STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophsy. J. 87, 37–46 (2004).

    Article  CAS  Google Scholar 

  109. Allen, T. E. & Palsson, B. Ø. Sequenced-based analysis of metabolic demands for protein synthesis in prokaryotes. J. Theor. Biol. 220, 1–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Lovley, D. R. Cleaning up with genomics: applying molecular biology to bioremediation. Nature Rev. Microbiol. 1, 35–44 (2003).

    Article  CAS  Google Scholar 

  111. Edwards, J. S. & Kauffman, K. J. Biochemical engineering in the 21st century. Curr. Opin. Biotechnol. 14, 451–453 (2003).

    Article  CAS  Google Scholar 

  112. Schilling, C. H., Edwards, J. S., Letscher, D. & Palsson, B. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol. Bioeng. 71, 286–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Vo, T. D., Greenberg, H. J. & Palsson, B. Ø. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279, 39532–35940 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the United States National Institutes of Health and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ø. Palsson.

Ethics declarations

Competing interests

B.Ø.P. is on the Scientific Advisory Board of Genomatica, Inc.

Related links

Related links

FURTHER INFORMATION

Bernhard Palsson's laboratory

GAMS

Matlab

Mathematica

SimPheny

Glossary

COBRA

(Constraint-based reconstruction and analysis). The overall philosophy and approach of applying constraints to limit the range of achievable functional (phenotypic) states of GENREs.

CONVEX SPACE

A convex space is one that satisfies the following condition: given any two points in the space, the line segment in between the points is completely contained in the space. Examples of convex objects include a square, triangle or circle.

CONCAVE SPACE

A space that is not convex. Examples of concave objects include a doughnut shape or a crescent.

GENRE

(Genome-scale network reconstruction). Applies to a particular organism, for example, GENRE of Escherichia coli. A GENRE contains a list of all the chemical transformations that take place in the particular network. These transformations can be represented stoichiometrically. These stoichiometric representations form a matrix, the rows of which represent the compounds, the columns of which represent the chemical transformations and the entries of which are the stoichiometric coefficients.

GEMS

Genome-scale models in silico of a particular organism, for example, GEMS of E. coli. The COBRA approach is used to analyse the properties of GENREs by assessing allowable functional states.

REDUCED COST

A mathematical programming term; it is the smallest change in the objective function coefficient needed for a zero variable to become a non-zero variable.

SHADOW PRICE

A mathematical programming term; it is the rate at which the objective value changes by increasing the supply of a particular resource (for example, a metabolite).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, N., Reed, J. & Palsson, B. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2, 886–897 (2004). https://doi.org/10.1038/nrmicro1023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing