Abstract
Emerging evidence indicates that the molecular mechanisms of cell death have regulatory roles in inflammation and that the molecular changes that are associated with different forms of cell death affect the course of inflammation in different ways. In this Timeline article, we discuss how our understanding of the mechanisms and functional roles of tissue injury and cell death in inflammation has evolved on the basis of almost two centuries of study. We describe how such ideas have led to our current models of cell death and inflammation, and we highlight the remaining gaps in our knowledge of the subject.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Change history
23 December 2013
In figure 1 (Timeline) of the original article, the dates in the second part of the figure were missing. This has now been corrected online. Nature Reviews Immunology apologizes for this error.
References
Rocha e Silva, M. A brief survey of the history of inflammation. Agents Act. 8, 45–49 (1978).
Scott, A., Khan, K. M., Cook, J. L. & Duronio, V. What is “inflammation''? Are we ready to move beyond celsus? Br. J. Sports Med. 38, 248–249 (2004).
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).
Adams, F. The Genuine Works of Hippocrates (Syndenham Society, 1771).
Long, E. R. The history of pathology (Dover Publications, 1965).
Dutrochet, M. H. Recherches Anatomiques et Physiologiques sur la Structure Intime des Animaux et des Végétaux, et sur leur Motilité (J. B. Baillière, 1824).
Wagner, R. Erlauterungstaflen zur Physiologie und Entwicklungsgeschichte (Leopold Voss, Leipzig, 1839).
Virchow, R. Cellular Pathology as Based upon Physiological and Pathological Histology: Twenty Lectures Delivered in the Pathological Institute of Berlin During the Months of February, March and April, 1858 (R. M. DeWitt, 1860).
Cohnheim, J. F. Ueber entzündung und eiterung. Virch. Arch. path. Anat. 40, 1–79 (in German) (1867).
Weigert, C. Ueber die pathologischen gerinnungsvorgänge. Virch. Arch. path. Anat. 79, 87–123 (in German) (1880).
Schmalstieg, F. C. Jr & Goldman, A. S. Ilya ilich metchnikoff (1845–1915) and paul ehrlich: The centennial of the 1908 nobel prize in physiology or medicine. J. Med. Biogr. 16, 96–103 (2008).
Sanarelli, G. De la pathogenic du cholera c (neuvieme memoire). Le cholera experimental. Ann. Inst. Pasteur 38, 11–72 (in French) (1924).
Shwartzman, G. Studies on bacillus typhosus toxic substances: I. Phenomenon of local skin reactivity to B. Typhosus culture filtrate. J. Exp. Med. 48, 247–268 (1928).
Koch, R. Fortsetzung über ein heilmittel gegen tuberculose. Dtsch. Med. Wochenschr. 17, 669–672 (in German) (1891).
Arthus, N. M. Injections répétées de serum du cheval chez le lapin. Comptes Rendus Séances Société Biol. Filiales (Paris). 55, 817–820 (in French) (1903).
Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: With a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).
Guelliot, O. Note sur trois cas de purpusa infectieux foudroyant. Un. Med. Sci. Nord-Est. 8, 25–37 (in French) (1884).
Mori, W. The shwartzman reaction: A review including clinical manifestations and proposal for a univisceral or single organ third type. Histopathology 5, 113–126 (1981).
Opie, E. L. Intracellular digestion: The enzymes and anti-enzymes concerned. Physiol. Rev. 2, 552–585 (1922).
Henson, P. M. & Johnston, R. B. Jr. Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J. Clin. Invest. 79, 669–674 (1987).
Weiss, S. J. Tissue destruction by neutrophils. N. Engl. J. Med. 320, 365–376 (1989).
Dale, H. H. & Laidlaw, P. P. The physiological action of β-iminazolylethylamine. J. Physiol. 41, 318–344 (1910).
Lewis, T. Blood Vessels of the Human Skin and Their Responses (Shaw and Sons, 1927).
Menkin, V. Newer Concepts of Inflammation (ed. Ryan, E. J.) (Charles C. Thomas, 1948).
Bennett, I. L. Jr & Beeson, P. B. Studies on the pathogenesis of fever. Ii. Characterization of fever-producing substances from polymorphonuclear leukocytes and from the fluid of sterile exudates. J. Exp. Med. 98, 493–508 (1953).
Isaacs, A. & Lindemann, J. Virus interference. I. Interferons. Proc. R. Soc. Ser. B. Biol. Sci. 147, 258–267 (1957).
Oppenheim, J. J. Cytokines: Past, present, and future. Int. J. Hematol. 74, 3–8 (2001).
Taniguchi, T., Ohno, S., Fujii-Kuriyama, Y. & Muramatsu, M. The nucleotide sequence of human fibroblast interferon cDNA. Gene. 10, 11–15 (1980).
Nagata, S. et al. Synthesis in E. Coli of a polypeptide with human leukocyte interferon activity. Nature 284, 316–320 (1980).
Carswell, E. A., Old, L. J., Fiore, N. & Schwartz, M. K. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).
Wallach, D., Kovalenko, A. & Feldmann, M. (eds) Advances in TNF Family Research. Proceedings of the 12th International TNF Conference (Springer, 2011).
Medzhitov, R., PrestonHurlburt, P. & Janeway, C. A. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).
Poltorak, A. et al. Defective lps signaling in c3h/hej and c57bl/10sccr mice: Mutations in Tlr4 gene. Science 282, 2085–2088 (1998).
Earle, W. R. et al. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. Natl Cancer Inst. 4, 165–212 (1943).
Lockshin, R. A. & Zakeri, Z. Programmed cell death and apoptosis: Origins of the theory. Nature Rev. Mol. Cell Biol. 2, 545–550 (2001).
Majno, G., La Gattuta, M. & Thompson, T. E. Cellular death and necrosis: Chemical, physical and morphologic changes in rat liver. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 333, 421–465 (1960).
Vogt, C. Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkroete (Alytes Obstetricans) (Jent und Gassman, 1842).
Clarke, P. G. & Clarke, S. Nineteenth century research on naturally occurring cell death and related phenomena. Anat. Embryol. (Berl.). 193, 81–99 (1996).
Judah, J. D., Ahmed, K. & McLean, A. E. Pathogenesis of cell necrosis. Fed. Proc. 24, 1217–1221 (1965).
Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).
Horvitz, H. R., Sternberg, P. W., Greenwald, I. S., Fixsen, W. & Ellis, H. M. Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 453–463 (1983).
Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393 (1985).
Bakhshi, A. et al. Cloning the chromosomal breakpoint of T(14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41, 899–906 (1985).
Cleary, M. L. & Sklar, J. Nucleotide sequence of a T(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl Acad. Sci. USA 82, 7439–7443 (1985).
Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-Myc to immortalize pre-B cells. Nature 335, 440–442 (1988).
Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992).
Vaux, D. L. Apoptosis timeline. Cell Death Differ. 9, 349–354 (2002).
Schweich, J. U. & Merker, H. J. Morphology of various types of cell death in prenatal tissues. Teratology 7, 253–266 (1973).
Kroemer, G. et al. Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 16, 3–11 (2009).
Kajstura, J. et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest. 74, 86–107 (1996).
McCully, J. D., Wakiyama, H., Hsieh, Y. J., Jones, M. & Levitsky, S. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 286, H1923–H1935 (2004).
Raff, M. C. Social controls on cell-survival and cell-death. Nature 356, 397–400 (1992).
Kalfayan, B. & Kidd, J. G. Structural changes produced in brown-pearce carcinoma cells by means of a specific antibody and complement. J. Exp. Med. 97, 145–162 (1953).
Clark, R. A., Olsson, I. & Klebanoff, S. J. Cytotoxicity for tumor cells of cationic proteins from human neutrophil granules. J. Cell Biol. 70, 719–723 (1976).
Clark, R. A. & Klebanoff, S. J. Neutrophil-mediated tumor cell cytotoxicity: Role of the peroxidase system. J. Exp. Med. 141, 1442–1447 (1975).
Badwey, J. A. & Karnovsky, M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu. Rev. Biochem. 49, 695–726 (1980).
Paucker, K., Cantell, K. & Henle, W. Quantitative studies on viral interference in suspended l cells: Iii. Effect of interfering viruses and interferon on the growth rate of cells. Virology 17, 324–334 (1962).
Govaerts, A. Cellular antibodies in kidney homotransplantation. J. Immunol. 85, 516–522 (1960).
Rosenau, W. & Moon, H. D. Lysis of homologous cells by sensitized lymphocytes in tissue culture. J. Natl Cancer Inst. 27, 471–483 (1961).
Granger, G. A. & Kolb, W. P. Lymphocyte in vitro cytotoxicity: Mechanisms of immune and non-immune small lymphocyte mediated target l cell destruction. J. Immunol. 101, 111–120 (1968).
Ruddle, N. H. & Waksman, B. H. Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. Iii. Analysis of mechanisms. J. Exp. Med. 128, 1267–1279 (1968).
Hahn, T. et al. Use of monoclonal antibodies to a human cytotoxin for its isolation and for examining the self-induction of resistance to this protein. Proc. Natl Acad. Sci. USA 82, 3814–3818 (1985).
Gray, P. W. et al. Expression of human immune interferon cDNA in E. Coli and monkey cells. Nature 295, 503–508 (1982).
Gray, P. W. et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumor necrosis activity. Nature 312, 721–724 (1984).
Pennica, D. et al. Human tumor necrosis factor: Precursor structure, cDNA cloning, expression, and homology to lymphotoxin. Nature 312, 724–729 (1984).
Wallach, D. et al. Tumor necrosis factor receptor and fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).
Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634 (1988).
Aggarwal, B. B., Moffat, B. & Harkins, R. N. Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J. Biol. Chem. 259, 686–691 (1984).
Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).
Wiley, S. R. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682 (1995).
Pitti, R. M. et al. Induction of apoptosis by apo-2 ligand, a new member of the the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687–12690 (1996).
Ashida, H. et al. Cell death and infection: A double-edged sword for host and pathogen survival. J. Cell. Biol. 195, 931–942 (2011).
Engelmann, H. et al. Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity. J. Biol. Chem. 265, 14497–14504 (1990).
Boldin, M. P. et al. A novel protein that interacts with the death domain of fas/apo1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 (1995).
Chinnalyan, A. M., O'Rourke, K., Tewari, M. & Dixit, V. M. Fadd, a novel death domain-containing protein, interacts with the death domain of FAS and initiates apoptosis. Cell 81, 505–512 (1995).
Boldin, M. P., Goncharov, T. M., Goltsev, Y. V. & Wallach, D. Involvement of mach, a novel mort1/fadd-interacting protease, in fas/apo-1- and TNF receptor-induced cell death. Cell 85, 803–815 (1996).
Muzio, M. et al. Flice, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (FAS/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).
Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 4, 313–321 (2008).
Zhang, D. W. et al. Rip3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNFα. Cell 137, 1100–1111 (2009).
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).
Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012).
Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274, 782–784 (1996).
Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).
Zychlinsky, A., Fitting, C., Cavaillon, J. M. & Sansonetti, P. J. Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J. Clin. Invest. 94, 1328–1332 (1994).
von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J. & Vance, R. E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31, 73–106 (2013).
Massart, J. & Bordet, C. Le chimiotaxisme des leukocytes et l'infection microbienne Ann. Inst. Pasteur. 5, 417–444 (1891).
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).
Rock, K. L. & Kono, H. The inflammatory response to cell death. Annu. Rev. Pathol. 3, 99–126 (2008).
Kerr, J. F. R. Shrinkage necrosis - distinct mode of cellular death. J. Pathol. 105, 13–20 (1971).
Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation. Delivered at Pasteur Institute, 1891. (Trubner, 1893).
Savill, J. S. et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865–875 (1989).
Whyte, M. K., Meagher, L. C., MacDermot, J. & Haslett, C. Impairment of function in aging neutrophils is associated with apoptosis. J. Immunol. 150, 5124–5134 (1993).
Kanaly, S. T., Nashleanas, M., Hondowicz, B. & Scott, P. TNF receptor p55 is required for elimination of inflammatory cells following control of intracellular pathogens. J. Immunol. 163, 3883–3889 (1999).
Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature. 390, 350–351 (1997).
Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGFβ, PGE2, and paf. J. Clin. Invest. 101, 890–898 (1998).
Silva, M. T., do Vale, A. & dos Santos, N. M. Secondary necrosis in multicellular animals: An outcome of apoptosis with pathogenic implications. Apoptosis 13, 463–482 (2008).
Bossaller, L. et al. Cutting edge: Fas (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012).
Cullen, S. P. et al. FAS/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol. Cell 49, 1034–1048 (2013).
Oberst, A. et al. Catalytic activity of the caspase-8-flip(l) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).
Wallach, D., Kang, T.-B. & Kovalenko, A. The extrinsic cell death pathway and the elan mortel. Cell Death Differ. 15, 1533–1541 (2008).
Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504 (1995).
Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).
Kuranaga, E. & Miura, M. Nonapoptotic functions of caspases: Caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol. 17, 135–144 (2007).
Enari, M. et al. A caspase-activated DNAse that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).
Bratton, D. L. & Henson, P. M. Neutrophil clearance: When the party is over, clean-up begins. Trends Immunol. 32, 350–357 (2011).
Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol. 2, 569–579 (2002).
Corriden, R. & Insel, P. A. Basal release of ATP: an autocrine–paracrine mechanism for cell regulation. Sci. Signal. 3, re1 (2010).
Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3, 995–1001 (2002).
Yang, H., Wang, H., Czura, C. J. & Tracey, K. J. The cytokine activity of HMGB1. J. Leukoc. Biol. 78, 1–8 (2005).
Wallach, D., Kovalenko, A. & Kang, T. B. 'Necrosome'-induced inflammation: Must cells die for it? Trends Immunol. 32, 505–509 (2011).
Celsus, A. C. & Spencer, W. G. De medicina (Harvard Univ. Press, 1938).
Nunn, J. F. Ancient Egyptian Medicine (Univ. of Oklahoma Press, 2002).
Morgagni, G. B. De Sedibus et Causis Morborum per Anatomen Indagatis: Libri Quinque: In Quibus Continentur Dissectiones et Animadversiones Propemodum Innumerae, Medicis, Chirurgis, Anatomicis Profuturae (Typographia Remondini, 1761).
Flemming, W. Ueber die Bildung von Richtungsfiguren in Säiugethiereiern beim Untergang Graaf'scher Follikel. Arch. Anat. Physiol. 221–244 (1885).
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell. 10, 417–426 (2002).
Mallory, G. K., White, P. D. & Salcedo-Salgar, J. The speed of healing of myocardial infarction. Am. Heart J. 18, 647 (1939).
Opie, E. L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med. 115, 597–608 (1962).
Page, A. R. & Good, R. A. A clinical and experimental study of the function of neutrophils in the inflammatory response. Am. J. Pathol. 34, 645–669 (1958).
Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).
Rouhiainen, A., Tumova, S., Valmu, L., Kalkkinen, N. & Rauvala, H. Pivotal advance: Analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukoc. Biol. 81, 49–58 (2007).
Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).
Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).
Burlingame, A. L., Boyd, R. K. & Gaskell, S. J. Mass spectrometry. Anal. Chem. 70, 647R–716R (1998).
Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Cerretti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).
Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).
Acknowledgements
The authors thank O. Brenner, I. Cohen and A. Elson for advice on the manuscript. D.W. is the incumbent of the Joseph and Bessie Feinberg Professorial Chair at The Weizmann Institute of Science, Rehovot, Israel.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
PowerPoint slides
Rights and permissions
About this article
Cite this article
Wallach, D., Kang, TB. & Kovalenko, A. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol 14, 51–59 (2014). https://doi.org/10.1038/nri3561
Published:
Issue Date:
DOI: https://doi.org/10.1038/nri3561
This article is cited by
-
Ferroptosis: a promising candidate for exosome-mediated regulation in different diseases
Cell Communication and Signaling (2024)
-
Identification of TNFRSF21 as an inhibitory factor of osteosarcoma based on a necroptosis-related prognostic gene signature and molecular experiments
Cancer Cell International (2024)
-
A potential immunotherapy target for breast cancer: parenchymal and immune-stromal expression of the NLRP3 inflammasome pathway
BMC Cancer (2023)
-
Ketogenic Diet: A Nutritional Therapeutic Tool for Lipedema?
Current Obesity Reports (2023)
-
Virulence-related gene wx2 of Toxoplasma gondii regulated host immune response via classic pyroptosis pathway
Parasites & Vectors (2022)