Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Mapping normal and cancer cell signalling networks: towards single-cell proteomics

Abstract

Oncogenesis and tumour progression are supported by alterations in cell signalling. Using flow cytometry, it is now possible to track and analyse signalling events in individual cancer cells. Data from this type of analysis can be used to create a network map of signalling in each cell and to link specific signalling profiles with clinical outcomes. This form of 'single-cell proteomics' can identify pathways that are activated in therapy-resistant cells and can provide biomarkers for cancer diagnosis and for determining patient prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Individual-cell analysis of signalling.
Figure 2: Commonality of mechanism indicates a signalling profile.
Figure 3: Changes in JAK–STAT signalling in therapy-resistant cancer cells.

Similar content being viewed by others

References

  1. Perez, O. D., Krutzik, P. O. & Nolan, G. P. Flow cytometric analysis of kinase signaling cascades. Methods Mol. Biol. 263, 67–94 (2004).

    CAS  PubMed  Google Scholar 

  2. Krutzik, P. O. & Nolan, G. P. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry 55A, 61–70 (2003).

    CAS  Google Scholar 

  3. Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nature Rev. Immunol. 4, 648–655 (2004).

    CAS  Google Scholar 

  4. Irish, J. M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    CAS  PubMed  Google Scholar 

  5. Timmerman, J. M. et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99, 1517–1526 (2002).

    CAS  PubMed  Google Scholar 

  6. Pruzlj, N., Jurisica, I. & Wigle, D. Knowledge Discovery in Proteomics: Graph Theory Analysis of Protein–Protein Interactions 129–198 (Chapman & Hall/CRC Mathematica Biology and Medicine, 2005).

    Google Scholar 

  7. Xia, Y. et al. Analyzing cellular biochemistry in terms of molecular networks. Annu. Rev. Biochem. 73, 1051–1087 (2004).

    PubMed  Google Scholar 

  8. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005).

    CAS  PubMed  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  10. Martin, G. S. Cell signaling and cancer. Cancer Cell 4, 167–174 (2003).

    CAS  PubMed  Google Scholar 

  11. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    CAS  PubMed  Google Scholar 

  12. Klein, S., McCormick, F. & Levitzki, A. Killing time for cancer cells. Nature Rev. Cancer 5, 573–580 (2005).

    CAS  Google Scholar 

  13. Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    CAS  PubMed  Google Scholar 

  14. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    CAS  PubMed  Google Scholar 

  15. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    CAS  PubMed  Google Scholar 

  16. Lackner, M. R. et al. Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7, 325–336 (2005).

    CAS  PubMed  Google Scholar 

  17. Pardanani, A. & Tefferi, A. Imatinib targets other than bcr–abl and their clinical relevance in myeloid disorders. Blood 104, 1931–1939 (2004).

    CAS  PubMed  Google Scholar 

  18. Buchdunger, E. et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 295, 139–145 (2000).

    CAS  PubMed  Google Scholar 

  19. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  20. Calo, V. et al. STAT proteins: from normal control of cellular events to tumorigenesis. J. Cell. Physiol. 197, 157–168 (2003).

    CAS  PubMed  Google Scholar 

  21. Townsend, P. A. et al. STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J. Biol. Chem. 279, 5811–5820 (2003).

    PubMed  Google Scholar 

  22. Druker, B. J. STI571 (Gleevec) as a paradigm for cancer therapy. Trends Mol. Med. 8, S14–S18 (2002).

    CAS  PubMed  Google Scholar 

  23. Krutzik, P. O., Irish, J. M., Nolan, G. P. & Perez, O. D. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin. Immunol. 110, 206–221 (2004).

    CAS  PubMed  Google Scholar 

  24. Chow, S. et al. Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A 67, 4–17 (2005).

    PubMed  Google Scholar 

  25. Dave, S. S. et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 351, 2159–2169 (2004).

    CAS  PubMed  Google Scholar 

  26. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Google Scholar 

  27. Podar, K. & Anderson, K. C. The pathophysiological role of VEGF in hematological malignancies: therapeutic implications. Blood 105, 1383–1395 (2004).

    PubMed  Google Scholar 

  28. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    CAS  PubMed  Google Scholar 

  29. Wozniak, J. & Kopec-Szlezak, J. c-Kit receptor (CD117) expression on myeloblasts and white blood cell counts in acute myeloid leukemia. Cytometry B Clin. Cytom. 58, 9–16 (2004).

    PubMed  Google Scholar 

  30. Holyoake, T., Jiang, X., Eaves, C. & Eaves, A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94, 2056–2064 (1999).

    CAS  PubMed  Google Scholar 

  31. Robillard, N., Pellat-Deceunynck, C. & Bataille, R. Phenotypic characterization of the human myeloma cell growth fraction. Blood 105, 4845–4848 (2005).

    CAS  PubMed  Google Scholar 

  32. Mason, D. et al. CD antigens 2002. Blood 99, 3877–3880 (2002).

    CAS  PubMed  Google Scholar 

  33. O'Brien, M. C. & Bolton, W. E. Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry. Cytometry 19, 243–255 (1995).

    CAS  PubMed  Google Scholar 

  34. Juan, G. et al. Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 32, 71–77 (1998).

    CAS  PubMed  Google Scholar 

  35. Erlanson, M. & Landberg, G. Flow cytometric quantification of cyclin E in human cell lines and hematopoietic malignancies. Cytometry 32, 214–222 (1998).

    CAS  PubMed  Google Scholar 

  36. Castillo, R. et al. Proliferative response of mantle cell lymphoma cells stimulated by CD40 ligation and IL-4. Leukemia 14, 292–298 (2000).

    CAS  PubMed  Google Scholar 

  37. Cooperman, J., Neely, R., Teachey, D. T., Grupp, S. & Choi, J. K. Cell division rates of primary human precursor B cells in culture reflect in vivo rates. Stem Cells 22, 1111–1120 (2004).

    PubMed  Google Scholar 

  38. Laane, E. et al. Flow cytometric immunophenotyping including Bcl-2 detection on fine needle aspirates in the diagnosis of reactive lymphadenopathy and non-Hodgkin's lymphoma. Cytometry B Clin. Cytom. 64, 34–42 (2005).

    PubMed  Google Scholar 

  39. Morkve, O., Halvorsen, O. J., Stangeland, L., Gulsvik, A. & Laerum, O. D. Quantitation of biological tumor markers (p53, c-myc, Ki-67 and DNA ploidy) by multiparameter flow cytometry in non-small-cell lung cancer. Int. J. Cancer 52, 851–855 (1992).

    CAS  PubMed  Google Scholar 

  40. Andreeff, M., Slater, D. E., Bressler, J. & Furth, M. E. Cellular ras oncogene expression and cell cycle measured by flow cytometry in hematopoietic cell lines. Blood 67, 676–681 (1986).

    CAS  PubMed  Google Scholar 

  41. Zheng, A. et al. p53 status of newly established acute myeloid leukaemia cell lines. Br. J. Cancer 79, 407–415 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Carney, W. P. et al. Monoclonal antibody specific for an activated RAS protein. Proc. Natl Acad. Sci. USA 83, 7485–7489 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ohtani, S. et al. Quantitative analysis of p53-targeted gene expression and visualization of p53 transcriptional activity following intratumoral administration of adenoviral p53 in vivo. Mol. Cancer Ther. 3, 93–100 (2004).

    CAS  PubMed  Google Scholar 

  44. Belloc, F. et al. Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry 40, 151–160 (2000).

    CAS  PubMed  Google Scholar 

  45. Armstrong, J. S. et al. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ. 9, 252–263 (2002).

    CAS  PubMed  Google Scholar 

  46. Chow, S. & Hedley, D. Flow cytometric determination of glutathione in clinical samples. Cytometry 21, 68–71 (1995).

    CAS  PubMed  Google Scholar 

  47. Maecker, H. T. & Levy, R. Prevalence of antigen receptor variants in human T cell lines and tumors. J. Immunol. 142, 1395–1404 (1989).

    CAS  PubMed  Google Scholar 

  48. Lee, P. P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. 5, 677–685 (1999).

    CAS  PubMed  Google Scholar 

  49. Trentin, L. et al. Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104, 502–508 (2004).

    CAS  PubMed  Google Scholar 

  50. Panoskaltsis, N., Reid, C. D. & Knight, S. C. Quantification and cytokine production of circulating lymphoid and myeloid cells in acute myelogenous leukaemia. Leukemia 17, 716–730 (2003).

    CAS  PubMed  Google Scholar 

  51. Kottaridis, P. D. et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98, 1752–1759 (2001).

    CAS  PubMed  Google Scholar 

  52. Taniguchi, M. et al. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res. 59, 4297–4300 (1999).

    CAS  PubMed  Google Scholar 

  53. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    CAS  PubMed  Google Scholar 

  54. Houben, R. et al. Constitutive activation of the Ras–Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J. Carcinog. 3, 6 (2004).

    PubMed  PubMed Central  Google Scholar 

  55. Slebos, R. J. et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 323, 561–565 (1990).

    CAS  PubMed  Google Scholar 

  56. Wan, P. T. et al. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    CAS  PubMed  Google Scholar 

  57. Iida, M. et al. Lack of constitutive activation of MAP kinase pathway in human acute myeloid leukemia cells with N-Ras mutation. Leukemia 13, 585–589 (1999).

    CAS  PubMed  Google Scholar 

  58. Lohrisch, C. & Piccart, M. HER2/neu as a predictive factor in breast cancer. Clin. Breast Cancer 2, 129–135 (2001).

    CAS  PubMed  Google Scholar 

  59. Smith, B. L. et al. The efficacy of Herceptin therapies is influenced by the expression of other erbB receptors, their ligands and the activation of downstream signalling proteins. Br. J. Cancer 91, 1190–1194 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yakes, F. M. et al. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 62, 4132–4141 (2002).

    CAS  PubMed  Google Scholar 

  61. Zhou, B. P. et al. HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt–NF-κB pathway. J. Biol. Chem. 275, 8027–8031 (2000).

    CAS  PubMed  Google Scholar 

  62. Shuai, K., Halpern, J., ten Hoeve, J., Rao, X. & Sawyers, C. L. Constitutive activation of STAT5 by the BCRABL oncogene in chronic myelogenous leukemia. Oncogene 13, 247–254 (1996).

    CAS  PubMed  Google Scholar 

  63. Nieborowska-Skorska, M. et al. Signal transducer and activator of transcription (STAT)5 activation by BCR–ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR–ABL and is required for leukemogenesis. J. Exp. Med. 189, 1229–1242 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCRABL gene mutation or amplification. Science 293, 876–880 (2001).

    CAS  PubMed  Google Scholar 

  65. Barthe, C., Cony-Makhoul, P., Melo, J. V. & Mahon, J. R. Roots of clinical resistance to STI-571 cancer therapy. Science 293, 2163 (2001).

    CAS  PubMed  Google Scholar 

  66. Benekli, M. et al. Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival. Blood 99, 252–257 (2002).

    CAS  PubMed  Google Scholar 

  67. Sattler, M. & Salgia, R. Targeting c-Kit mutations: basic science to novel therapies. Leuk. Res. 28 (Suppl.), S11–S20 (2004).

    CAS  PubMed  Google Scholar 

  68. Pietras, K., Sjoblom, T., Rubin, K., Heldin, C. H. & Ostman, A. PDGF receptors as cancer drug targets. Cancer Cell 3, 439–443 (2003).

    CAS  PubMed  Google Scholar 

  69. Stirewalt, D. L. & Radich, J. P. The role of FLT3 in haematopoietic malignancies. Nature Rev. Cancer 3, 650–665 (2003).

    CAS  Google Scholar 

  70. Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nature Rev. Cancer 5, 251–262 (2005).

    Google Scholar 

  71. Mishra, L., Shetty, K., Tang, Y., Stuart, A. & Byers, S. W. The role of TGF-β and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24, 5775–5789 (2005).

    CAS  PubMed  Google Scholar 

  72. LeRoith, D. & Helman, L. The new kid on the block(ade) of the IGF-1 receptor. Cancer Cell 5, 201–202 (2004).

    CAS  PubMed  Google Scholar 

  73. Pasca di Magliano, M. & Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nature Rev. Cancer 3, 903–911 (2003).

    Google Scholar 

  74. Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer 2, 361–372 (2002).

    CAS  Google Scholar 

  75. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer 4, 361–370 (2004).

    CAS  Google Scholar 

  76. Harari, D. & Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19, 6102–6114 (2000).

    CAS  PubMed  Google Scholar 

  77. Silva, C. M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23, 8017–8023 (2004).

    CAS  PubMed  Google Scholar 

  78. Levy, D. E. & Gilliland, D. G. Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene 19, 2505–2510 (2000).

    CAS  PubMed  Google Scholar 

  79. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer 4, 97–105 (2004).

    CAS  Google Scholar 

  80. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    CAS  PubMed  Google Scholar 

  81. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    CAS  Google Scholar 

  82. Rassenti, L. Z. et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N. Engl. J. Med. 351, 893–901 (2004).

    CAS  PubMed  Google Scholar 

  83. Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nature Rev. Cancer 2, 764–776 (2002).

    CAS  Google Scholar 

  84. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  85. Dougall, W. C. et al. The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 9, 2109–2123 (1994).

    CAS  PubMed  Google Scholar 

  86. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Rev. Cancer 2, 420–430 (2002).

    CAS  Google Scholar 

  87. Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 5, 749–759 (2005).

    CAS  Google Scholar 

  88. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005).

    CAS  PubMed  Google Scholar 

  89. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).

    CAS  Google Scholar 

  90. Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nature Rev. Cancer 2, 91–100 (2002).

    Google Scholar 

  91. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    CAS  PubMed  Google Scholar 

  92. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    CAS  Google Scholar 

  94. Minamino, T., Miyauchi, H., Tateno, K., Kunieda, T. & Komuro, I. Akt-induced cellular senescence: implication for human disease. Cell Cycle 3, 449–451 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Ihrie for reviewing the manuscript and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry P. Nolan.

Ethics declarations

Competing interests

Garry Nolan is a paid consultant to vendors of reagents and flow cytometry products. He also consults with several pharmaceutical companies in the area of technologies discussed in this review.

Related links

Related links

DATABASES

National Cancer Institute

acute myeloid leukaemia

chronic myeloid leukaemia

lymphoma

FURTHER INFORMATION

National Center for Biotechnology Information gene-expression omnibus

Information hyperlinked over proteins

Institute for Systems Biology

Signal Transduction Knowledge Environment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irish, J., Kotecha, N. & Nolan, G. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6, 146–155 (2006). https://doi.org/10.1038/nrc1804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing