Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Tumour-educated macrophages promote tumour progression and metastasis

Abstract

Evidence from clinical and experimental studies indicates that macrophages promote solid-tumour progression and metastasis. Macrophages are educated by the tumour microenvironment, so that they adopt a trophic role that facilitates angiogenesis, matrix breakdown and tumour-cell motility — all of which are elements of the metastatic process. During an inflammatory response, macrophages also produce many compounds — ranging from mutagenic oxygen and nitrogen radicals to angiogenic factors — that can contribute to cancer initiation and promotion. Macrophages therefore represent an important drug target for cancer prevention and cure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pro- and anti-tumorigenic properties of macrophages depend on the cytokine microenvironment in the tumour.
Figure 2: Pro-tumorigenic functions of tumour-associated macrophages.
Figure 3: The leukocytic infiltration site as a portal for the exit of tumour cells.

Similar content being viewed by others

References

  1. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Iyengar, P. et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22, 6408–6423 (2003).

    CAS  PubMed  Google Scholar 

  5. Krtolica, A. et al. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    CAS  PubMed  Google Scholar 

  7. Lin, E. Y., Gouon-Evans, V., Nguyen, A. V. & Pollard, J. W. The macrophage growth factor, CSF-1, in mammary gland development and cancer. J. Mammary Gland Biol. Neoplasia 7, 147–162 (2002).

    PubMed  Google Scholar 

  8. Leek, R. D. & Harris, A. L. Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia 7, 177–189 (2002).

    PubMed  Google Scholar 

  9. Brigati, C., Noonan, D. M., Albini, A. & Benelli, R. Tumors and inflammatory infiltrates: friends or foes? Clin. Exp. Metastasis 19, 247–258 (2002).

    CAS  PubMed  Google Scholar 

  10. Normann, S. J. Macrophage infiltration and tumor progression. Cancer Metastasis Rev. 4, 277–291 (1985).

    CAS  PubMed  Google Scholar 

  11. Mantovani, A. Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Lab. Invest. 71, 5–16 (1994).

    CAS  PubMed  Google Scholar 

  12. Lingen, M. W. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch. Pathol. Lab. Med. 125, 67–71 (2001).

    CAS  PubMed  Google Scholar 

  13. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    CAS  PubMed  Google Scholar 

  14. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    CAS  PubMed  Google Scholar 

  15. Nakayama, Y. et al. Relationships between tumor-associated macrophages and clinicopathological factors in patients with colorectal cancer. Anticancer Res. 22, 4291–4296 (2002).

    PubMed  Google Scholar 

  16. Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6, 3282–3289 (2000).

    CAS  PubMed  Google Scholar 

  17. Saji, H. et al. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92, 1085–1091 (2001).

    CAS  PubMed  Google Scholar 

  18. Smith, H. O. et al. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin. Cancer Res. 1, 313–325 (1995).

    CAS  PubMed  Google Scholar 

  19. Kacinski, B. M. CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol. Reprod. Dev. 46, 71–74 (1997).

    CAS  PubMed  Google Scholar 

  20. Kacinski, B. M. CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann. Med. 27, 79–85 (1995).

    CAS  PubMed  Google Scholar 

  21. Scholl, S. M. et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J. Natl Cancer Inst. 86, 120–126 (1994).

    CAS  PubMed  Google Scholar 

  22. Elgert, K., Alleva, D. & Mullins, D. Tumor-induced immune dysfunction: the macrophage connection. J. Leukoc. Biol. 64, 275–290 (1998).

    CAS  PubMed  Google Scholar 

  23. Ohm, J. E. & Carbone, D. P. VEGF as a mediator of tumor-associated immunodeficiency. Immunol. Res. 23, 263–272 (2001).

    CAS  PubMed  Google Scholar 

  24. Dunn, G. P. et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3, 991–998 (2002).

    CAS  Google Scholar 

  25. Taylor-Papadimitriou, J. et al. MUC1 and the immunobiology of cancer. J. Mammary Gland Biol. Neoplasia 7, 209–221 (2002).

    PubMed  Google Scholar 

  26. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    CAS  PubMed  Google Scholar 

  27. Chong, H., Vodovotz, Y., Cox, G. W. & Barcellos-Hoff, M. H. Immunocytochemical localization of latent transforming growth factor-β activation by stimulated macrophages. J. Cell Physiol. 178, 275–283 (1999).

    CAS  PubMed  Google Scholar 

  28. Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791 (1998).

    CAS  PubMed  Google Scholar 

  29. Menetrier-Caux, C. et al. IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res. 61, 3096–3104 (2001).

    CAS  PubMed  Google Scholar 

  30. Boggio, K. et al. Ability of systemic interleukin-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res. 60, 359–364 (2000).

    CAS  PubMed  Google Scholar 

  31. Nanni, P. et al. Prevention of HER-2/neu transgenic mammary carcinoma by tamoxifen plus interleukin 12. Int. J. Cancer 105, 384–389 (2003).

    CAS  PubMed  Google Scholar 

  32. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nature Rev. Cancer 4, 11–22 (2004).

    CAS  Google Scholar 

  33. Price, L. K. H., Choi, H. U., Rosenberg, L. & Stanley, E. R. The predominant form of secreted colony stimulating factor-1 is a proteoglycan. J. Biol. Chem. 267, 2190–2199 (1992).

    CAS  PubMed  Google Scholar 

  34. Jadus, M. R. et al. Macrophages kill T9 glioma tumor cells bearing the membrane isoform of macrophage colony stimulating factor through a phagocytosis-dependent pathway. J. Immunol. 160, 361–368 (1998).

    CAS  PubMed  Google Scholar 

  35. Jadus, M. R. et al. Macrophages can recognize and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood 87, 5232–5241 (1996).

    CAS  PubMed  Google Scholar 

  36. Williams, C. C. et al. Membrane macrophage colony-stimulating factor on MADB106 breast cancer cells does not activate cytotoxic macrophages but immunizes rats against breast cancer. Mol. Ther. 3, 216–224 (2001).

    CAS  PubMed  Google Scholar 

  37. Aharinejad, S. et al. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res. 62, 5317–5324 (2002).

    CAS  PubMed  Google Scholar 

  38. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    CAS  PubMed  Google Scholar 

  39. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  40. Boudreau, N. & Myers, C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res. 5, 140–146 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  42. Bando, H. & Toi, M. Tumor angiogenesis, macrophages, and cytokines. Adv. Exp. Med. Biol. 476, 267–284 (2000).

    CAS  PubMed  Google Scholar 

  43. Lewis, J. S. et al. Expression of vascular endothelial growth factor by macrophages is up- regulated in poorly vascularized areas of breast carcinomas. J. Pathol. 192, 150–158 (2000).

    CAS  PubMed  Google Scholar 

  44. Leek, R. D. et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190, 430–436 (2000).

    CAS  PubMed  Google Scholar 

  45. Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56, 4625–4629 (1996).

    CAS  PubMed  Google Scholar 

  46. Eubank, T. D. et al. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J. Immunol. 171, 2637–2643 (2003).

    CAS  PubMed  Google Scholar 

  47. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    CAS  PubMed  Google Scholar 

  48. Miles, D. W. et al. Expression of tumour necrosis factor (TNFα) and its receptors in benign and malignant breast tissue. Int. J. Cancer 56, 777–782 (1994).

    CAS  PubMed  Google Scholar 

  49. Eda, H. et al. Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5'-deoxy-5-fluorouridine. Cancer Chemother. Pharmacol. 32, 333–338 (1993).

    CAS  PubMed  Google Scholar 

  50. Leek, R. D. et al. Association of tumour necrosis factor α and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br. J. Cancer 77, 2246–2251 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hildenbrand, R., Dilger, I., Horlin, A. & Stutte, H. J. Urokinase and macrophages in tumour angiogenesis. Br. J. Cancer 72, 818–823 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stacey, K. J. et al. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol. Cell. Biol. 15, 3430–3441 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hildenbrand, R. et al. Transforming growth factor-β stimulates urokinase expression in tumor-associated macrophages of the breast. Lab. Invest. 78, 59–71 (1998).

    CAS  PubMed  Google Scholar 

  54. Foekens, J. A. et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res. 60, 636–643. (2000).

    CAS  PubMed  Google Scholar 

  55. Hildenbrand, R. et al. Urokinase receptor localization in breast cancer and benign lesions assessed by in situ hybridization and immunohistochemistry. Histochem. Cell. Biol. 110, 27–32 (1998).

    CAS  PubMed  Google Scholar 

  56. Fox, S. B. et al. Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J. Pathol. 195, 236–243 (2001).

    CAS  PubMed  Google Scholar 

  57. Knoop, A. et al. Prognostic significance of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in primary breast cancer. Br. J. Cancer 77, 932–940 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hildenbrand, R. et al. Urokinase plasminogen activator receptor (CD87) expression of tumor-associated macrophages in ductal carcinoma in situ, breast cancer, and resident macrophages of normal breast tissue. J. Leukoc. Biol. 66, 40–49 (1999).

    CAS  PubMed  Google Scholar 

  59. Jung, Y. J. et al. IL-1β mediated up-regulation of HIF-1α via an NFκB/COX-2 pathway identifies HIF–1 as a critical link between inflammation and oncogenesis. FASEB J. 17, 2115–2117 (2003).

    CAS  PubMed  Google Scholar 

  60. Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA 100, 2645–2650 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. MacMicking, J., Xie, Q. W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    CAS  PubMed  Google Scholar 

  62. Wink, D. A. et al. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19, 711–721 (1998).

    CAS  PubMed  Google Scholar 

  63. Ellies, L. G. et al. Mammary tumor latency is increased in mice lacking the inducible nitric oxide synthase. Int. J. Cancer 106, 1–7 (2003).

    CAS  PubMed  Google Scholar 

  64. Grimshaw, M. J., Wilson, J. L. & Balkwill, F. R. Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur. J. Immunol. 32, 2393–2400 (2002).

    CAS  PubMed  Google Scholar 

  65. Arnott, C. H. et al. Tumour necrosis factor-α mediates tumour promotion via a PKCα- and AP-1-dependent pathway. Oncogene 21, 4728–4738 (2002).

    CAS  PubMed  Google Scholar 

  66. Ogmundsdottir, H. M., Petursdottir, I. & Gudmundsdottir, I. Interactions between the immune system and breast cancer. Acta Oncol. 34, 647–650 (1995).

    CAS  PubMed  Google Scholar 

  67. Menard, S., Tagliabue, E., Campiglio, M. & Pupa, S. M. Role of HER2 gene overexpression in breast carcinoma. J. Cell Physiol. 182, 150–162 (2000).

    CAS  PubMed  Google Scholar 

  68. Nicholson, S. et al. Epidermal growth factor receptor (EGFR); results of a 6 year follow-up study in operable breast cancer with emphasis on the node negative subgroup. Br. J. Cancer 63, 146–150 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. O'Sullivan, C., Lewis, C. E., Harris, A. L. & McGee, J. O. Secretion of epidermal growth factor by macrophges associated with breast carcinoma. Lancet 342, 872–873 (1993).

    Google Scholar 

  70. Wyckoff, J. B., Segall, J. E. & Condeelis, J. S. The collection of the motile population of cells from a living tumor. Cancer Res. 60, 5401–5404 (2000).

    CAS  PubMed  Google Scholar 

  71. Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).

    PubMed  PubMed Central  Google Scholar 

  72. Maeda, H. & Akaike, T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc.) 63, 854–865 (1998).

    CAS  PubMed  Google Scholar 

  73. Fulton, A. M., Loveless, S. E. & Heppner, G. H. Mutagenic activity of tumor-associated macrophages in Salmonella typhimurium strains TA98 and TA100. Cancer Res. 44, 4308–4311 (1984).

    CAS  PubMed  Google Scholar 

  74. Hudson, J. D. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med. 190, 1375–1382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999).

    CAS  PubMed  Google Scholar 

  76. Mor, G. et al. Macrophages, estrogen and the microenvironment of breast cancer. J. Steroid Biochem. Mol. Biol. 67, 403–411 (1998).

    CAS  PubMed  Google Scholar 

  77. Mor, G. et al. Interaction of the estrogen receptors with the Fas ligand promoter in human monocytes. J. Immunol. 170, 114–122 (2003).

    CAS  PubMed  Google Scholar 

  78. King, B. L. et al. Immunocytochemical analysis of breast cells obtained by ductal lavage. Cancer 96, 244–249 (2002).

    PubMed  Google Scholar 

  79. Travis, R. C. & Key, T. J. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 5, 239–247 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ricchi, P., Zarrilli, R., Di Palma, A. & Acquaviva, A. M. Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br. J. Cancer 88, 803–807 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ryan, B. M., Russel, M. G., Langholz, E. & Stockbrugger, R. W. Aminosalicylates and colorectal cancer in IBD: a not-so bitter pill to swallow. Am. J. Gastroenterol. 98, 1682–1687 (2003).

    CAS  PubMed  Google Scholar 

  82. Sasmono, R. T. et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101, 1155–1163 (2003).

    CAS  PubMed  Google Scholar 

  83. Pollard, J. W. & Stanley, E. R. Pleiotropic roles for CSF-1 in development defined by the mouse mutation osteopetrotic (op). Adv. Dev. Biochem. 4, 153–193 (1996).

    CAS  Google Scholar 

  84. Pollard, J. W. Role of colony-stimulating factor-1 in reproduction and development. Mol. Reprod. Dev. 46, 54–61 (1997).

    CAS  PubMed  Google Scholar 

  85. Gouon-Evans, V., Rothenberg, M. E. & Pollard, J. W. Postnatal mammary gland development requires macrophages and eosinophils. Development 127, 2269–2282 (2000).

    CAS  PubMed  Google Scholar 

  86. Lang, R. A. & Bishop, J. M. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74, 453–462 (1993).

    CAS  PubMed  Google Scholar 

  87. Gouon-Evans, V., Lin, E. Y. & Pollard, J. W. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 4, 155–164 (2002).

    PubMed  PubMed Central  Google Scholar 

  88. Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171–183 (2000).

    CAS  PubMed  Google Scholar 

  89. Rosin, M. P., Anwar, W. A. & Ward, A. J. Inflammation, chromosomal instability, and cancer: the schistosomiasis model. Cancer Res. 54 (Suppl.), 1929s–1933s (1994).

    CAS  PubMed  Google Scholar 

  90. Mostafa, M. H., Sheweita, S. A. & O'Connor, P. J. Relationship between schistosomiasis and bladder cancer. Clin. Microbiol. Rev. 12, 97–111 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Castellsague, X., Bosch, F. X. & Munoz, N. Environmental co-factors in HPV carcinogenesis. Virus Res. 89, 191–199 (2002).

    CAS  PubMed  Google Scholar 

  92. Shacter, E. & Weitzman, S. A. Chronic inflammation and cancer. Oncology (Huntingt.) 16, 217–226, 229; discussion 230–232 (2002).

    PubMed  Google Scholar 

  93. Kornfeld, D., Ekbom, A. & Ihre, T. Is there an excess risk for colorectal cancer in patients with ulcerative colitis and concomitant primary sclerosing cholangitis? A population based study. Gut 41, 522–525 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sieweke, M. H., Stoker, A. W. & Bissell, M. J. Evaluation of the cocarcinogenic effect of wounding in Rous sarcoma virus tumorigenesis. Cancer Res. 49, 6419–6424 (1989).

    CAS  PubMed  Google Scholar 

  95. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–674 (2002).

    CAS  PubMed  Google Scholar 

  96. Di Carlo, E. et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97, 339–345 (2001).

    CAS  PubMed  Google Scholar 

  97. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Haghnegahdar, H. et al. The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J. Leukoc. Biol. 67, 53–62 (2000).

    CAS  PubMed  Google Scholar 

  99. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the outstanding work of E. Lin in demonstrating roles for macrophages in mouse models of breast cancer in my laboratory, and thank A. Niklaus for helping with the figures. This research was supported by the National Institutes of Health and the Albert Einstein Cancer Center. J. W. P. is the Betty and Sheldon E. Feinberg Senior Faculty Scholar in Cancer Research. This article is dedicated to Barry Kacinski, who first discovered CSF-1 receptor overexpression in human tumours and whose untimely death is deeply regretted.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

bladder cancer

breast cancer

cervical cancer

colorectal cancer

lung cancer

ovarian cancer

prostate cancer

stomach cancer

uterine cancer

LocusLink

CCL2

CCL4

CCL7

CCL8

CSF-1

ERBB1

GM-CSF

IFN-γ

IL-1

IL-4

IL-6

IL-12

MIF

MMP-2

MMP-7

MMP-9

MSP

TGF-β1

TNF-α

VEGF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, J. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4, 71–78 (2004). https://doi.org/10.1038/nrc1256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing