Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis

Abstract

Crop plants contain large amounts of secondary compounds that interfere with protein extraction and gel-based proteomic analysis. Thus, a protein extraction protocol that can be easily applied to various crop materials with minimal optimization is essential. Here we describe a universal protocol for total protein extraction involving trichloroacetic acid (TCA)/acetone precipitation followed by SDS and phenol extraction. Through SDS extraction, the proteins precipitated by the TCA/acetone treatment can be fully resolubilized and then further purified by phenol extraction. This protocol combines TCA/acetone precipitation, which aggressively removes nonprotein compounds, and phenol extraction, which selectively dissolves proteins, resulting in effective purification of proteins from crop tissues. This protocol can also produce high-quality protein preparations from various recalcitrant tissues, and therefore it has a wide range of applications in crop proteomic analysis. Designed to run on a small scale, this protocol can be completed within 5 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the full protocol.
Figure 2: Quality control and 2-DE separation of maize leaf and embryo proteins.
Figure 3: Comparative 2-DE analysis of maize leaves proteins by using three extraction protocols.

Similar content being viewed by others

References

  1. Swindell, W.R., Huebner, M. & Weber, A.P. Transcriptional profiling of Arabidopsis heat-shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8, 125 (2007).

    Article  Google Scholar 

  2. Salekdeh, G.H. & Komatsu, S. Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7, 2976–2996 (2007).

    Article  CAS  Google Scholar 

  3. Nanjo, Y., Nouri, M.Z. & Komatsu, S. Quantitative proteomic analyses of crop seedlings subjected to stress conditions; a commentary. Phytochemistry 72, 1263–1272 (2011).

    Article  CAS  Google Scholar 

  4. Cottrell, J.S. Protein identification using MS/MS data. J. Proteomics 74, 1842–1851 (2011).

    Article  CAS  Google Scholar 

  5. Cánovas, F.M. et al. Plant proteome analysis. Proteomics 4, 285–298 (2004).

    Article  Google Scholar 

  6. Wang, W., Tai, F.J. & Chen, S.N. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Sep. Sci. 31, 2032–2039 (2008).

    Article  CAS  Google Scholar 

  7. Görg, A. et al. The current state of two-dimensional electrophoresis with immobiline pH gradients. Electrophoresis 21, 1037–1053 (2000).

    Article  Google Scholar 

  8. Vâlcu, C.M. & Schlink, K. Reduction of proteins during sample preparation and two-dimensional electrophoresis of woody plant samples. Proteomics 6, 1599–1605 (2006).

    Article  Google Scholar 

  9. Saravanan, R.S. & Rose, J.K.C. A critical evaluation of sample extraction techniques for enhanced proteomics analysis of recalcitrant plant tissues. Proteomics 4, 2522–2532 (2004).

    Article  CAS  Google Scholar 

  10. Timperio, A.M., Egidi, M.G. & Zolla, L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J. Proteomics 71, 391–411 (2008).

    Article  CAS  Google Scholar 

  11. Faurobert, M. et al. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol. 143, 1327–1346 (2007).

    Article  CAS  Google Scholar 

  12. Damerval, C., De Vienne, D., Zivy, M. & Thiellement, H. Technical improvements in two-dimensional electrophoresis increase the level of genetic-variation detected in wheat-seedling proteins. Electrophoresis 7, 52–54 (1986).

    Article  CAS  Google Scholar 

  13. Isaacson, T. et al. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat. Protoc. 1, 769–774 (2006).

    Article  CAS  Google Scholar 

  14. Plomion, C. & Lalanne, C. Protein extraction from woody plants. Methods Mol. Biol. 355, 37–41 (2007).

    CAS  PubMed  Google Scholar 

  15. Amiour, N. et al. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. J. Exp. Bot. 63, 5017–5033 (2012).

    Article  CAS  Google Scholar 

  16. Benešová, M. et al. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE 7, e38017 (2012).

    Article  Google Scholar 

  17. Marsoni, M. et al. Protein extraction from grape tissues by two-dimensional electrophoresis. Vitis 44, 181–186 (2005).

    CAS  Google Scholar 

  18. Vincent, D., Wheatley, M.D. & Cramer, G.R. Optimization of protein extraction and solubilization for mature grape berry clusters. Electrophoresis 27, 1853–1865 (2006).

    Article  CAS  Google Scholar 

  19. Wang, W. et al. Protein extraction for 2-D electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24, 2369–2375 (2003).

    Article  CAS  Google Scholar 

  20. Grassmann, W. & Deffner, G. Verteilungschromatographisches verhalten von proteinen und peptiden in phenolhaltigen lösungsmitteln. Hoppe-Seylor's Z. Physiol. Chem. 293, 89–98 (1953).

    Article  CAS  Google Scholar 

  21. Hurkman, W.J. & Tanaka, C.K. Solubilization of plant membrane proteins for analysis by two-dimensional electrophoresis. Plant Physiol. 81, 802–806 (1986).

    Article  CAS  Google Scholar 

  22. Carpentier, S.C. et al. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5, 2497–2507 (2005).

    Article  CAS  Google Scholar 

  23. Yao, Y., Yang, Y.W. & Liu, J.Y. An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE. Electrophoresis 27, 4559–4569 (2006).

    Article  CAS  Google Scholar 

  24. Zhao, F. et al. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae. Plant Sci. 185–186, 176–184 (2012).

    Article  Google Scholar 

  25. Wang, W. et al. Removal of lipid contaminants by organic solvents from oilseed protein extract prior to electrophoresis. Anal. Biochem. 329, 139–141 (2004).

    Article  CAS  Google Scholar 

  26. Wang, W., Vignani, R., Scali, M. & Cresti, M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27, 2782–2786 (2006).

    Article  CAS  Google Scholar 

  27. Wang, W., Liu, Q.J & Cui, H. Rapid desalting and protein recovery with phenol after ammonium sulphate fractionation. Electrophoresis 28, 2358–2360 (2007).

    Article  CAS  Google Scholar 

  28. Wang, W., Wu, X.L., Xiong, E.H. & Tai, F.J. Improving gel-based proteome analysis of soluble protein extracts by heat prefractionation. Proteomics 12, 938–943 (2012).

    Article  CAS  Google Scholar 

  29. Tai, F.J. et al. Identification of membrane proteins in maize leaves, altered in stress through polyethylene glycol treatment. Plant Omics J. 4, 250–256 (2011).

    CAS  Google Scholar 

  30. Wu, X.L., Xiong, E.H., An, S.F., Gong, F.P. & Wang, W. Sequential extraction results in improved proteome profiling of medicinal plant Pinellia ternata tubers, which contain large amounts of high-abundance proteins. PLoS ONE 7, e50497 (2012).

    Article  CAS  Google Scholar 

  31. Hu, X.L. et al. Characterization of small heat-shock proteins associated with maize tolerance to combined drought and heat stress. J. Plant Growth Regul. 29, 455–464 (2010).

    Article  CAS  Google Scholar 

  32. Hu, X.L. et al. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS ONE 7, e49500 (2012).

    Article  CAS  Google Scholar 

  33. Liu, T.X. et al. Identification of proteins regulated by ABA in response to combined drought and heat stress in maize roots. Acta Physiol. Plant. 35, 501–513 (2013).

    Article  CAS  Google Scholar 

  34. Briante, R. et al. Olea europaea L. leaf extract and derivatives: antioxidant properties. J. Agric. Food Chem. 50, 4934–4940 (2002).

    Article  CAS  Google Scholar 

  35. Konno, K., Hirayama, C., Yasui, H. & Nakamura, M. Enzymatic activation of oleuropein: A protein crosslinker used as a chemical defense in the privet tree. Proc. Natl. Acad. Sci. USA 96, 9159–9164 (1999).

    Article  CAS  Google Scholar 

  36. Xiong, E.H., Wu, X.L., Shi, J., Wang, X.Y. & Wang, W. Proteomic identification of differentially expressed proteins between male and female plants in Pistacia chinensis. PLoS ONE 8, e64276 (2013).

    Article  CAS  Google Scholar 

  37. Wu, X.L. et al. Proteomic analysis of seed viability in maize. Acta Physiol. Plant. 33, 181–191 (2011).

    Article  CAS  Google Scholar 

  38. Wang, W. et al. Male-sterile mutation alters Zea m 1 (β-expansin 1) accumulation in a maize mutant. Sex. Plant Reprod. 17, 41–47 (2004).

    Article  CAS  Google Scholar 

  39. Zhu, Y.H. et al. Proteomic identification of differentially expressed proteins in mature and germinated maize pollen. Acta Physiol. Plant. 33, 1467–1474 (2011).

    Article  CAS  Google Scholar 

  40. Chen, S.N., Rillig, M.C. & Wang, W. Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection. Proteomics 9, 4970–4973 (2009).

    Article  CAS  Google Scholar 

  41. Marchi, S., Tognetti, R., Minnocci, A., Borghi, M. & Sebastiani, L. Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and an evergreen sclerophyllous Mediterranean shrub (Olea europaea). Trees 22, 559–571 (2008).

    Article  CAS  Google Scholar 

  42. Aranjuelo, I., Molero, G., Erice, G., Avice, J.C. & Nogués, S. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J. Exp. Bot. 62, 111–123 (2011).

    Article  CAS  Google Scholar 

  43. Röhrig, H. et al. Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ. 29, 1606–1617 (2006).

    Article  Google Scholar 

  44. Yang, F., Xiao, X.W., Zhang, S., Korpelainen, H. & Li, C.Y. Salt stress responses in Populus cathayana Rehder. Plant Sci. 176, 669–677 (2009).

    Article  CAS  Google Scholar 

  45. Pirovani, C.P. et al. Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches' broom disease. Electrophoresis 29, 2391–2401 (2008).

    Article  CAS  Google Scholar 

  46. Parrotta, L., Cai, G. & Cresti, M. Changes in the accumulation of α-and β-tubulin during bud development in Vitis vinifera L. Planta. 231, 277–291 (2010).

    Article  CAS  Google Scholar 

  47. Gómez-Vidal, S., Tena, M., Lopez-Llorca, L.V. & Salinas, J. Protein extraction from Phoenix dactylifera L. leaves, a recalcitrant material, for two-dimensional electrophoresis. Electrophoresis 29, 448–456 (2008).

    Article  Google Scholar 

  48. Wang, L., Pan, Z.Y. & Guo, W.W. Proteomic analysis of leaves from a diploid cybrid produced by protoplast fusion between Satsuma mandarin and pummelo. Plant Cell Tiss. Org. Cult. 103, 165–174 (2010).

    Article  CAS  Google Scholar 

  49. Dupae, J. et al. A comparative study of soluble protein extractions of Populus deltoids × (Trichocarpa × Deltoides) for 2-DE. J. Life Sci. 6, 970–979 (2012).

    CAS  Google Scholar 

  50. Haq, Q.M.I., Jyothsna, P., Ali, A. & Malathi, V.G. Coat protein deletion mutation of mungbean yellow mosaic india virus (MYMIV). J. Plant Biochem. Biotechnol. 20, 182–189 (2011).

    Article  CAS  Google Scholar 

  51. Yu, Y. et al. VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine. J. Exp. Bot. 62, 5671–5682 (2011).

    Article  CAS  Google Scholar 

  52. Madsen, E.B. et al. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J. 65, 404–417 (2011).

    Article  CAS  Google Scholar 

  53. Karppinen, K., Taulavuori, E. & Hohtola, A. Optimization of protein extraction from Hypericum perforatum tissues and immunoblotting detection of hyp-1 at different stages of leaf development. Mol. Biotechnol. 46, 219–226 (2010).

    Article  CAS  Google Scholar 

  54. Rodrigues, E.P., Torres, A.R., da Silva Batista, J.S., Huergo, L. & Hungria, M. A simple, economical and reproducible protein extraction protocol for proteomics studies of soybean roots. Genet. Mol. Biol. 35, 348–352 (2012).

    Article  CAS  Google Scholar 

  55. Zhao, P.M. et al. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J. Proteome Res. 9, 1076–1087 (2010).

    Article  CAS  Google Scholar 

  56. Zheng, Q., Song, J., Doncaster, K., Rowland, E. & Byers, D.M. Qualitative and quantitative evaluation of protein extraction protocols for apple and strawberry fruit suitable for two-dimensional electrophoresis and mass spectrometry analysis. J. Agric. Food Chem. 55, 1663–1673 (2007).

    Article  CAS  Google Scholar 

  57. Lücker, J., Laszczak, M., Smith, D. & Lund, S.T. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation. BMC Genomics 10, 50 (2009).

    Article  Google Scholar 

  58. Vega-García, M.O. et al. Changes in protein expression associated with chilling injury in tomato fruit. J. Am. Soc. Hortic. Sci. 135, 83–89 (2010).

    Article  Google Scholar 

  59. Rastegari, E., Ahmad, Z., Spencer, D.F. & Ismai, M. Two-dimensional profiling of proteins from Curculigo latifolia fruit by three different extraction protocols. J. Med. Plants Res. 5, 3719–3724 (2011).

    CAS  Google Scholar 

  60. Dam, S. et al. The proteome of seed development in the model legume Lotus japonicus. Plant Physiol. 149, 1325–1340 (2009).

    Article  CAS  Google Scholar 

  61. Sghaier-Hammami, B., Valledor, L., Drira, N. & Jorrin-Novo, J.V. Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9, 2543–2554 (2009).

    Article  CAS  Google Scholar 

  62. Marondedze, C. & Thomas, L.A. Insights into fruit function from the proteome of the hypanthium. J. Plant Physiol. 169, 12–19 (2012).

    Article  CAS  Google Scholar 

  63. Jorrín, J.V., Maldonado, A.M. & Castillejo, M.A. Plant proteome analysis: A 2006 update. Proteomics 7, 2947–2962 (2007).

    Article  Google Scholar 

  64. Maldonado, A.M., Echevarría-Zomeño, S., Jean-Baptiste, S., Hernández, M. & Jorrín-Novo, J.V. Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. J. Proteomics 71, 461–472 (2008).

    Article  CAS  Google Scholar 

  65. Duan, X. et al. A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J. Proteome Res. 8, 2838–2850 (2009).

    Article  CAS  Google Scholar 

  66. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in our laboratory was supported by grants from the National Natural Science Foundation of China (grant nos. 31230055 and 31371543) and the Ministry of Science and Technology of China (grant no. 2011CB111509).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and E.X. conducted the experiments and interpreted the data. X.W. and W.W. developed the protocol, interpreted the data and drafted the manuscript. M.S. and M.C. developed the sections of the protocol and provided intellectual and technical expertise.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Xiong, E., Wang, W. et al. Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc 9, 362–374 (2014). https://doi.org/10.1038/nprot.2014.022

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.022

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research