Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal features in the energetics of symmetry breaking

Abstract

A breaking of symmetry involves an abrupt change in the set of microstates a system can explore. This change has unavoidable thermodynamic implications: a shrinkage of the microstate set results in an entropy decrease, which eventually needs to be compensated by heat dissipation and hence requires work. On the other hand, in a spontaneous symmetry breaking, the available phase-space volume changes without the need for work, yielding an apparent entropy decrease. Here we show that this entropy decrease is a key ingredient of a Szilard engine and Landauer’s principle, and perform a direct measurement of the entropy change along symmetry-breaking transitions for a Brownian particle subject to a bistable potential realized through two optical traps. The experiment confirms theoretical results based on fluctuation theorems, enables the construction of a Szilard engine extracting energy from a single thermal bath, and shows that a signature of a symmetry breaking in a system’s energetics is observable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental protocol of symmetry breaking and symmetry restoration.
Figure 2: Energetics of symmetry breaking and symmetry restoration.
Figure 3: Experimental realization of the Szilard engine.

Similar content being viewed by others

References

  1. Leff, H. S. & Rex, A. F. Maxwell’s Demon. Entropy, Information, Computing (Adam Hilger, 1990).

    Book  Google Scholar 

  2. Parrondo, J. M. R. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions. Chaos 11, 725–733 (2001).

    Article  ADS  Google Scholar 

  3. Marathe, R. & Parrondo, J. M. R. Cooling classical particles with a microcanonical Szilard engine. Phys. Rev. Lett. 104, 245704 (2010).

    Article  ADS  Google Scholar 

  4. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nature Phys. 6, 988–992 (2010).

    Article  ADS  Google Scholar 

  5. Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

    Article  ADS  Google Scholar 

  6. Maragakis, P., Spichty, M. & Karplus, M. A differential fluctuation theorem. J. Phys. Chem. B 112, 6168–6174 (2008).

    Article  Google Scholar 

  7. Junier, I., Mossa, A., Manosas, M. & Ritort, F. Recovery of free energy branches in single molecule experiments. Phys. Rev. Lett. 102, 070602 (2009).

    Article  ADS  Google Scholar 

  8. Alemany, A., Mossa, A., Junier, I. & Ritort, F. Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nature Phys. 8, 688–694 (2012).

    Article  ADS  Google Scholar 

  9. Horowitz, J. M. & Parrondo, J. M. R. Optimizing non-ergodic feedback engines. Acta. Phys. Pol. B 44, 803–814 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  10. Sagawa, T. & Ueda, M. Minimal energy cost for thermodynamic information processing: Measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009).

    Article  ADS  Google Scholar 

  11. Horowitz, J. M., Sagawa, T. & Parrondo, J. M. R. Imitating chemical motors with optimal information motors. Phys. Rev. Lett. 111, 010602 (2013).

    Article  ADS  Google Scholar 

  12. Esposito, M. & Van den Broeck, C. Second law and Landauer principle far from equilibrium. Europhys. Lett. 95, 40004 (2011).

    Article  ADS  Google Scholar 

  13. Horowitz, J. M. & Vaikuntanathan, S. Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Phys. Rev. E 82, 061120 (2010).

    Article  ADS  Google Scholar 

  14. Horowitz, J. M. & Parrondo, J. M. R. Designing optimal discrete-feedback thermodynamic engines. New J. Phys. 13, 123019 (2011).

    Article  ADS  Google Scholar 

  15. Kawai, R., Parrondo, J. M. R. & den Broeck, C. V. Dissipation: The phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007).

    Article  ADS  Google Scholar 

  16. Dunkel, J. & Hilbert, S. Phase transitions in small systems: Microcanonical vs. canonical ensembles. Physica A 370, 390–406 (2006).

    Article  ADS  Google Scholar 

  17. Vaikuntanathan, S. & Jarzynski, C. Modeling Maxwell’s demon with a microcanonical Szilard engine. Phys. Rev. E 83, 061120 (2011).

    Article  ADS  Google Scholar 

  18. Martinez, I. A., Roldán, E., Parrondo, J. M. R. & Petrov, D. Effective heating to several thousand kelvin of an optically trapped sphere in a liquid. Phys. Rev. E 87, 032159 (2013).

    Article  ADS  Google Scholar 

  19. Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–342 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  20. Sekimoto, K. Langevin equation and thermodynamics. Prog. Theor. Phys. Suppl. 130, 17–27 (1998).

    Article  ADS  Google Scholar 

  21. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  ADS  Google Scholar 

  22. Mandal, D. & Jarzynski, C. Work and information processing in a solvable model of Maxwell’s demon. Proc. Natl Acad. Sci. USA 109, 11641–11645 (2012).

    Article  ADS  Google Scholar 

  23. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Phys. 8, 143–146 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I.A.M. and D.P. acknowledge financial support from the Fundació Privada Cellex Barcelona, Generalitat de Catalunya grant 2009-SGR-159, and from the Spanish Ministry of Science and Innovation (MICINN FIS2008-00114, FIS2011-24409). E.R. and J.M.R.P. acknowledge fruitful discussions with S. Grill, M. Jahnel, M. Behrndt, J. M. Horowitz and L. Dinís, and financial support from grants ENFASIS (Spanish Government) and MODELICO (Comunidad de Madrid). This article is dedicated to the memory of D. Petrov, leader of the Optical Tweezers group at ICFO, who passed away on 3 February 2014.

Author information

Authors and Affiliations

Authors

Contributions

E.R. analysed experimental data, supported theoretical aspects and the design of the experiment, and performed computer simulations. I.A.M. designed the experiment, and obtained all experimental data. J.M.R.P. proposed and established the project, and developed its theoretical aspects. D.P. designed and supervised the experiment. All authors wrote the manuscript.

Corresponding author

Correspondence to J. M. R. Parrondo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldán, É., Martínez, I., Parrondo, J. et al. Universal features in the energetics of symmetry breaking. Nature Phys 10, 457–461 (2014). https://doi.org/10.1038/nphys2940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing