Abstract
World demand for rare-earth elements and the metal yttrium—which are crucial for novel electronic equipment and green-energy technologies—is increasing rapidly1,2,3. Several types of seafloor sediment harbour high concentrations of these elements4,5,6,7. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
US Department of the Interior and US Geological Survey. Mineral Commodity Summaries 2011 (US Government Printing Office, 2011).
Humphries, M. Rare earth elements: The global supply chain. CRS Report for Congress, R41347 (Congressional Research Service, Library of Congress, 2010).
Roskill Information Services Ltd. The Economics of Rare Earths & Yttrium 13 edn (Roskill, 2007).
Ruhlin, D. E. & Owen, R. M. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: Examination of a seawater scavenging mechanism. Geochim. Cosmochim. Acta 50, 393–400 (1986).
Courtois, C. & Clauer, N. Rare earth elements and strontium isotopes of polymetallic nodules from southeastern Pacific Ocean. Sedimentology 27, 687–695 (1980).
Murray, R. W. & Leinen, M. Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135° W: Tracking sedimentary major, trace and rare earth element fluxes at the Equator and the Intertropical Convergence Zone. Geochim. Cosmochim. Acta 57, 4141–4163 (1993).
Dubinin, A. V. & Sval’nov, V. N. Geochemistry of rare earth elements in ferromanganese micro- and macronodules from the Pacific nonproductive zone. Lithology Mineral Res. 35, 520–537 (2000).
Service, R. F. Nations move to head off shortages of rare earths. Science 327, 1596–1597 (2010).
Wu, C., Yuan, Z. & Bai, G. in Rare Earth Minerals: Chemistry, Origin and Ore Deposits Vol. 7 (eds Jones, A. P., Wall, F. & Williams, C. T.) 281–310 (The Mineralogical Society Series, Chapman and Hall, 1996).
Bao, Z. & Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 33, 519–535 (2008).
Murray, R. W., Buchholtz ten Brink, M. R., Gerlach, D. C., Ruth, G. P., III & Jones, D. L. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochim. Cosmochim. Acta 56, 2657–2671 (1992).
Lupton, J. E. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 317–346 (American Geophysical Union, 1995).
Wu, J., Wells, M. L. & Rember, R. Dissolved iron anomaly in the deep tropical–subtropical Pacific: Evidence for long-range transport of hydrothermal iron. Geochim. Cosmochim. Acta 75, 460–468 (2011).
Barrett, T. J. & Jarvis, I. Rare-earth element geochemistry of metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect. Chem. Geol. 67, 243–259 (1988).
German, C. R., Klinkhammer, G. P., Edmond, J. M., Mitra, A. & Elderfield, H. Hydrothermal scavenging of rare-earth elements in the ocean. Nature 345, 516–518 (1990).
Murray, R. W., Buchholtz ten Brink, M. R., Gerlach, D. C., Ruth, G. P., III & Jones, D. L. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim. Cosmochim. Acta 55, 1875–1895 (1991).
German, C. R. & Von Damm, K. L. in The Oceans and Marine Geochemistry (ed. Elderfield, H.) 181–222 (Treatise on Geochemistry, 6, Elsevier, 2006).
Iwamori, H., Albarède, F. & Nakamura, H. Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection. Earth Planet. Sci. Lett. 299, 339–351 (2010).
Piper, D. Z. Rare earth elements in ferromanganese nodules and other marine phases. Geochim. Cosmochim. Acta 38, 1007–1022 (1974).
Dubinin, A. V. Geochemistry of rare earth elements in oceanic phillipsites. Lithology Mineral Res. 35, 101–108 (2000).
Leinen, M. et al. DSDP Init. Repts. Vol. 92, 25–96 (US Government Printing Office, 1986).
Lyle, M. et al. Proc. ODP Init. Repts. Vol. 199, 1–57 (Ocean Drilling Program, 2002).
Kato, Y. et al. Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics. Geochim. Cosmochim. Acta 62, 3475–3497 (1998).
Kato, Y., Nakao, K. & Isozaki, Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change. Chem. Geol. 182, 15–34 (2002).
Kato, Y., Fujinaga, K. & Suzuki, K. Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex. Geochem. Geophys. Geosyst. 6, Q07004 (2005).
Toyoda, K., Nakamura, Y. & Masuda, A. Rare earth elements of Pacific pelagic sediments. Geochim. Cosmochim. Acta 54, 1093–1103 (1990).
Hyvärinen, A., Karhunen, J. & Oja, E. Independent Component Analysis (John Wiley, 2001).
Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10, 626–634 (1999).
Acknowledgements
This research used drill core samples provided by the Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) and piston core samples collected by K. Kobayashi of the University of Tokyo. Financial support is from JSPS through Grants-in-Aid 22226015 and the Toray Science Foundation. We thank K. Suzuki, T. Hirata, R. Senda, T. Ishii, K. Yagi, H. Yamazaki, H. Oga, M. Kawaguchi, S. Machida, S. Haraguchi, Y. Itabashi and C. Kabashima for assistance with chemical analyses. We are grateful for thorough and constructive reviews by J.F. Slack and V. Dekov, and for lasting encouragement by the late K. Tamaki.
Author information
Authors and Affiliations
Contributions
Y.K., K.F., K.N. and H.I. designed the study. K.F., Y.T., K.K., J.O., R.T. and T.N. carried out chemical analyses. Y.K., K.N. and H.I. primarily wrote the manuscript with input from all other co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1552 kb)
Supplementary Information
Supplementary Information (XLS 1799 kb)
Rights and permissions
About this article
Cite this article
Kato, Y., Fujinaga, K., Nakamura, K. et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geosci 4, 535–539 (2011). https://doi.org/10.1038/ngeo1185
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo1185
This article is cited by
-
Distribution of REY-Rich Mud in Deep-Sea Sediments from the Magellan Seamount Trail Zone in the Northwestern Pacific
Ocean Science Journal (2024)
-
Accumulation of rare earth elements in common vine leaves is achieved through extraction from soil and transport in the xylem sap
Communications Earth & Environment (2023)
-
Geochemistry and 14C dating of guano deposits in the Karaftu Cave, Kurdistan, Iran: implication for paleoenvironment
Environmental Monitoring and Assessment (2023)
-
Rare earth element signatures of Paleoproterozoic Sallopat phosphorites of Aravalli Basin, India: implications for diagenetic effects and depositional environment
Acta Geochimica (2023)
-
Characteristics of rare earth elements in the surface sediments of Southwest Indian Ridge: implication of grain size for the identification of hydrothermal activity
Geo-Marine Letters (2022)