Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks

Abstract

A key goal of biology is to construct networks that predict complex system behavior. We combine multiple types of molecular data, including genotypic, expression, transcription factor binding site (TFBS), and protein–protein interaction (PPI) data previously generated from a number of yeast experiments, in order to reconstruct causal gene networks. Networks based on different types of data are compared using metrics devised to assess the predictive power of a network. We show that a network reconstructed by integrating genotypic, TFBS and PPI data is the most predictive. This network is used to predict causal regulators responsible for hot spots of gene expression activity in a segregating yeast population. We also show that the network can elucidate the mechanisms by which causal regulators give rise to larger-scale changes in gene expression activity. We then prospectively validate predictions, providing direct experimental evidence that predictive networks can be constructed by integrating multiple, appropriate data types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A generic approach to identifying clique communities in the PPI network.
Figure 2: eQTL hot spot 4 subnetworks.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kulp, D.C. & Jagalur, M. Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 7, 125 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lum, P.Y. et al. Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. J. Neurochem. 97 (Suppl. 1), 50–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Mehrabian, M. et al. Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat. Genet. 37, 1224–1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Schadt, E.E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen, J. & Oliver, S. The next wave in metabolome analysis. Trends Biotechnol. 23, 544–546 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Rajagopalan, D. & Agarwal, P. Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 21, 788–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Brem, R.B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl. Acad. Sci. USA 102, 1572–1577 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. MacIsaac, K.D. et al. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7, 113 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, J. et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 105, 363–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).

  14. Ghazalpour, A. et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2, e130 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. & Barabasi, A.L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35, 57–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Deeds, E.J., Ashenberg, O. & Shakhnovich, E.I. A simple physical model for scaling in protein-protein interaction networks. Proc. Natl. Acad. Sci. USA 103, 311–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Guldener, U. et al. MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res. 34, D436–D441 (2006).

    Article  PubMed  Google Scholar 

  22. Ge, H., Liu, Z., Church, G.M. & Vidal, M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat. Genet. 29, 482–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Jansen, R., Greenbaum, D. & Gerstein, M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37–46 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, I., Date, S.V., Adai, A.T. & Marcotte, E.M. A probabilistic functional network of yeast genes. Science 306, 1555–1558 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S.I., Pe'er, D., Dudley, A.M., Church, G.M. & Koller, D. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc. Natl. Acad. Sci. USA 103, 14062–14067 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Workman, C.T. et al. A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, J. et al. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLOS Comput. Biol. 3, e69 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan, K., Shlomi, T., Feizi, H., Ideker, T. & Sharan, R. Transcriptional regulation of protein complexes within and across species. Proc. Natl. Acad. Sci. USA 104, 1283–1288 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ogawa, N., DeRisi, J. & Brown, P.O. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol. Biol. Cell 11, 4309–4321 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ronald, J., Brem, R.B., Whittle, J. & Kruglyak, L. Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet. 1, e25 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Giots, F., Donaton, M.C. & Thevelein, J.M. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 47, 1163–1181 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, X.J. Sal1p, a calcium-dependent carrier protein that suppresses an essential cellular function associated with the Aac2 isoform of ADP/ATP translocase in Saccharomyces cerevisiae. Genetics 167, 607–617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deutschbauer, A.M. & Davis, R.W. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat. Genet. 37, 1333–1340 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Sinha, H., Nicholson, B.P., Steinmetz, L.M. & McCusker, J.H. Complex genetic interactions in a quantitative trait locus. PLoS Genet. 2, e13 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pe'er, D., Regev, A., Elidan, G. & Friedman, N. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 (Suppl 1), S215–S224 (2001).

    Article  PubMed  Google Scholar 

  36. Ong, I.M., Glasner, J.D. & Page, D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18 (Suppl 1), S241–S248 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work at Princeton was supported by National Institute of Mental Health grant R37 MH059520 and a James S. McDonnell Foundation Centennial Fellowship to L.K., and Center grant P50GM071508 from the National Institute of General Medical Science to the Lewis-Sigler Institute. We thank J. Whittle for generating GPA1 allele swap data, S. Iyer for performing some of the deletion strain validation experiments and A. Deutschbauer (Lawrence Berkeley National Laboratory) for providing us with the MKT1 allele swap strain YAD350. We would also like to thank R. Ireton for her careful reading and editing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.N.S., B.D., R.B.B. and L.K. constructed and characterized the genetically modified yeast strains. J.Z., B.Z. and E.E.S. carried out the coexpression and Bayesian network analyses and performed bioinformatic analyses. E.N.S., B.D., R.B.B., L.K. and R.E.B. aided in the data analysis. All authors were involved in the study design and interpretation of the experimental results, and discussed the results and commented on the manuscript. J.Z., B.Z. and E.E.S. designed the study, developed methods, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Eric E Schadt.

Ethics declarations

Competing interests

J.Z., B.Z. and E.E.S. work for Merck and own stock in the company.

Supplementary information

Supplementary Text and Figures

Supplementary Data, Supplementary Methods, Supplementary Figures 1–5 and Supplementary Tables 1–4 (PDF 10776 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Zhang, B., Smith, E. et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 40, 854–861 (2008). https://doi.org/10.1038/ng.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing