Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemistry in living systems

Abstract

Dissecting complex cellular processes requires the ability to track biomolecules as they function within their native habitat. Although genetically encoded tags such as GFP are widely used to monitor discrete proteins, they can cause significant perturbations to a protein's structure and have no direct extension to other classes of biomolecules such as glycans, lipids, nucleic acids and secondary metabolites. In recent years, an alternative tool for tagging biomolecules has emerged from the chemical biology community—the bioorthogonal chemical reporter. In a prototypical experiment, a unique chemical motif, often as small as a single functional group, is incorporated into the target biomolecule using the cell's own biosynthetic machinery. The chemical reporter is then covalently modified in a highly selective fashion with an exogenously delivered probe. This review highlights the development of bioorthogonal chemical reporters and reactions and their application in living systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition of a typical mammalian cell11.
Figure 2: The bioorthogonal chemical reporter strategy.
Figure 3: Bioorthogonal chemical reporters and cellular imaging.
Figure 4: The Staudinger ligation.
Figure 5: Methods for introducing chemical reporters into proteins.
Figure 6: Azides can be incorporated into glycoconjugates using glycan biosynthetic pathways.

Similar content being viewed by others

References

  1. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Hadjantonakis, A.K., Dickinson, M.E., Fraser, S.E. & Papaioannou, V.E. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat. Rev. Genet. 4, 613–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298, 1623–1626 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Miyawaki, A., Sawano, A. & Kogure, T. Lighting up cells: labelling proteins with fluorophores. Nat. Cell Biol. 5 (Suppl.), S1–S7 (2003).

    Google Scholar 

  9. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Verkhusha, V.V. & Lukyanov, K.A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol. 22, 289–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Alberts, B. Molecular Biology of the Cell (Garland Science, New York, 2002)

    Google Scholar 

  12. Schweppe, R.E., Haydon, C.E., Lewis, T.S., Resing, K.A. & Ahn, N.G. The characterization of protein post-translational modifications by mass spectrometry. Acc. Chem. Res. 36, 453–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. von Mehren, M., Adams, G.P. & Weiner, L.M. Monoclonal antibody therapy for cancer. Annu. Rev. Med. 54, 343–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Hudson, P.J. & Souriau, C. Engineered antibodies. Nat. Med. 9, 129–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hermanson, G.T. Bioconjugate Techniques (Academic Press, San Diego, 1996).

    Google Scholar 

  17. Link, A.J., Vink, M.K. & Tirrell, D.A. Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc. 126, 10598–10602 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Z. et al. A new strategy for the site-specific modification of proteins in vivo. Biochemistry 42, 6735–6746 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Saxon, E. et al. Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. J. Am. Chem. Soc. 124, 14893–14902 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Mahal, L.K., Yarema, K.J. & Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Luchansky, S.J., Goon, S. & Bertozzi, C.R. Expanding the diversity of unnatural cell-surface sialic acids. ChemBioChem 5, 371–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Luchansky, S.J. et al. Constructing azide-labeled cell surfaces using polysaccharide biosynthetic pathways. Methods Enzymol. 362, 249–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ovaa, H. et al. Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. Angew. Chem. Int. Edn. Engl. 42, 3626–3629 (2003).

    Article  CAS  Google Scholar 

  28. Vocadlo, D.J. & Bertozzi, C.R. A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew. Chem. Int. Edn. Engl. 43, 5338–5342 (2004).

    Article  CAS  Google Scholar 

  29. Speers, A.E. & Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Prescher, J.A., Dube, D.H. & Bertozzi, C.R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Kolb, H.C. & Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128–1137 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Agard, N.J., Prescher, J.A. & Bertozzi, C.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Andresen, M., Schmitz-Salue, R. & Jakobs, S. Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. Mol. Biol. Cell 15, 5616–5622 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Panchal, R.G. et al. In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc. Natl. Acad. Sci. USA 100, 15936–15941 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat. Neurosci. 7, 244–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Tour, O., Meijer, R.M., Zacharias, D.A., Adams, S.R. & Tsien, R.Y. Genetically targeted chromophore-assisted light inactivation. Nat. Biotechnol. 21, 1505–1508 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, I. & Ting, A.Y. Site-specific labeling of proteins with small molecules in live cells. Curr. Opin. Biotechnol. 16, 35–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Hahn, M.E. & Muir, T.W. Manipulating proteins with chemistry: a cross-section of chemical biology. Trends Biochem. Sci. 30, 26–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Johnsson, N. & Johnsson, K. A fusion of disciplines: chemical approaches to exploit fusion proteins for functional genomics. ChemBioChem 4, 803–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. van Swieten, P.F., Leeuwenburgh, M.A., Kessler, B.M. & Overkleeft, H.S. Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. Org. Biomol. Chem. 3, 20–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl. Acad. Sci. USA 101, 9955–9959 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Marks, K.M., Braun, P.D. & Nolan, G.P. A general approach for chemical labeling and rapid, spatially controlled protein inactivation. Proc. Natl. Acad. Sci. USA 101, 9982–9987 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Miller, L.W., Sable, J., Goelet, P., Sheetz, M.P. & Cornish, V.W. Methotrexate conjugates: a molecular in vivo protein tag. Angew. Chem. Int. Edn. Engl. 43, 1672–1675 (2004).

    Article  CAS  Google Scholar 

  47. Miller, L.W., Cai, Y., Sheetz, M.P. & Cornish, V.W. In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2, 255–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Guignet, E.G., Hovius, R. & Vogel, H. Reversible site-selective labeling of membrane proteins in live cells. Nat. Biotechnol. 22, 440–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Marks, K.M., Rosinov, M. & Nolan, G.P. In vivo targeting of organic calcium sensors via genetically selected peptides. Chem. Biol. 11, 347–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Franz, K.J., Nitz, M. & Imperiali, B. Lanthanide-binding tags as versatile protein coexpression probes. ChemBioChem 4, 265–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Giriat, I. & Muir, T.W. Protein semi-synthesis in living cells. J. Am. Chem. Soc. 125, 7180–7181 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Jencks, W.P. Studies on the mechanism of oxime and semicarbazone formation. J. Am. Chem. Soc. 81, 475–481 (1959).

    Article  CAS  Google Scholar 

  53. Rideout, D. Self-assembling cytotoxins. Science 233, 561–563 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Rideout, D. Self-assembling drugs: a new approach to biochemical modulation in cancer chemotherapy. Cancer Invest. 12, 189–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Rideout, D., Calogeropoulou, T., Jaworski, J. & McCarthy, M. Synergism through direct covalent bonding between agents: a strategy for rational design of chemotherapeutic combinations. Biopolymers 29, 247–262 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Rotenberg, S.A., Calogeropoulou, T., Jaworski, J., Weinstein, I.B. & Rideout, D. A self-assembling protein kinase C inhibitor. Proc. Natl. Acad. Sci. USA 88, 2490–2494 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Yarema, K.J., Mahal, L.K., Bruehl, R.E., Rodriguez, E.C. & Bertozzi, C.R. Metabolic delivery of ketone groups to sialic acid residues. Application to cell surface glycoform engineering. J. Biol. Chem. 273, 31168–31179 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, J.H. et al. Engineering novel cell surface receptors for virus-mediated gene transfer. J. Biol. Chem. 274, 21878–21884 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Sadamoto, R. et al. Control of bacteria adhesion by cell-wall engineering. J. Am. Chem. Soc. 126, 3755–3761 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Griffin, R.J. The medicinal chemistry of the azido group. Prog. Med. Chem. 31, 121–232 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Saegusa, T., Ito, Y. & Shimizu, T. Synthetic reactions by complex catalysts. XVII. Copper-catalyzed reaction of azide with thiol. J. Org. Chem. 35, 2979–2981 (1970).

    Article  CAS  Google Scholar 

  62. Staudinger, H. & Meyer, J. Uber neue organische phosphoverbindungen III. Phosphinmethlenderivate und phosphinimine. Helv. Chim. Acta 2, 635–646 (1919).

    Article  CAS  Google Scholar 

  63. Gololobov, Y.G. & Kasukhin, L.F. Recent advances in the Staudinger reaction. Tetrahedron 48, 1353–1406 (1992).

    Article  CAS  Google Scholar 

  64. Hang, H.C., Yu, C., Kato, D.L. & Bertozzi, C.R. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc. Natl. Acad. Sci. USA 100, 14846–14851 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Luchansky, S.J., Argade, S., Hayes, B.K. & Bertozzi, C.R. Metabolic functionalization of recombinant glycoproteins. Biochemistry 43, 12358–12366 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Nilsson, B.L., Kiessling, L.L. & Raines, R.T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939–1941 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Saxon, E., Armstrong, J.I. & Bertozzi, C.R.A. “Traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2, 2141–2143 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Kohn, M. et al. Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew. Chem. Int. Edn. Engl. 42, 5830–5834 (2003).

    Article  CAS  Google Scholar 

  70. Soellner, M.B., Dickson, K.A., Nilsson, B.L. & Raines, R.T. Site-specific protein immobilization by Staudinger ligation. J. Am. Chem. Soc. 125, 11790–11791 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Kohn, M. & Breinbauer, R. The Staudinger ligation—a gift to chemical biology. Angew. Chem. Int. Edn. Engl. 43, 3106–3116 (2004).

    Article  CAS  Google Scholar 

  72. Huisgen, R. 1,3-Dipolar Cycloaddition Chemistry (ed. Padwa, A.) (Wiley, New York, 1984).

    Google Scholar 

  73. Huisgen, R. 1,3-Dipolar cycloadditions. Angew. Chem. Int. Edn. Engl. 2, 565–598 (1963).

    Article  Google Scholar 

  74. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Edn. Engl. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  75. Tornoe, C.W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Seo, T.S. et al. Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. Proc. Natl. Acad. Sci. USA 101, 5488–5493 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Speers, A.E. & Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem 5, 41–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Link, A.J. & Tirrell, D.A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J. Am. Chem. Soc. 125, 11164–11165 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Turner, R., Jarrett, A.D., Goebel, P. & Mallon, B.J. Heats of hydrogenation. IX. Cyclic acetylenes and some miscellaneous olefins. J. Am. Chem. Soc. 95, 790–792 (1972).

    Article  Google Scholar 

  81. Wittig, G.A.K.A. Zur Existenz niedergliedriger Cycloalkine, I. Chem. Ber. 94, 3260–3275 (1961).

    Article  CAS  Google Scholar 

  82. Lin, F.L., Hoyt, H.M., van Halbeek, H., Bergman, R.G. & Bertozzi, C.R. Mechanistic investigation of the Staudinger ligation. J. Am. Chem. Soc. 127, 2686–2695 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Link, A.J., Mock, M.L. & Tirrell, D.A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 14, 603–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, L. & Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Edn. Engl. 44, 34–66 (2004).

    Article  CAS  Google Scholar 

  85. Datta, D., Wang, P., Carrico, I.S., Mayo, S.L. & Tirrell, D.A. A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. J. Am. Chem. Soc. 124, 5652–5653 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Kirshenbaum, K., Carrico, I.S. & Tirrell, D.A. Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. ChemBioChem 3, 235–237 (2002).

    Article  PubMed  Google Scholar 

  87. van Hest, J.C.M., Kiick, K.L. & Tirrell, D.A. Efficient incorporation of unsaturated methionine analogs into proteins in vivo. J. Am. Chem. Soc. 122, 1282–1288 (2000).

    Article  CAS  Google Scholar 

  88. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Chin, J.W. et al. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Deiters, A. & Schultz, P.G. In vivo incorporation of an alkyne into proteins in Escherichia coli. Bioorg. Med. Chem. Lett. 15, 1521–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, L., Zhang, Z., Brock, A. & Schultz, P.G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 56–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Deiters, A. et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc. 125, 11782–11783 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc. 126, 8896–8897 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Yin, J., Liu, F., Li, X. & Walsh, C.T. Labeling proteins with small molecules by site-specific posttranslational modification. J. Am. Chem. Soc. 126, 7754–7755 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Dierks, T. et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(α)-formylglycine generating enzyme. Cell 113, 435–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation and the immune system. Science 291, 2370–2376 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Gouyer, V. et al. Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNAcα-O-Bn in mucosal cell lines: an effect mediated through the intracellular synthesis of complex GalNAcα-O-Bn oligosaccharides. Front. Biosci. 6, D1235–D1244 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Wells, L., Vosseller, K. & Hart, G.W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Slawson, C. & Hart, G.W. Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr. Opin. Struct. Biol. 13, 631–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Orntoft, T.F. & Vestergaard, E.M. Clinical aspects of altered glycosylation of glycoproteins in cancer. Electrophoresis 20, 362–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Lowe, J.B. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol. 15, 531–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Dube, D.H. & Bertozzi, C.R. Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Lemieux, G.A. & Bertozzi, C.R. Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents. J. Am. Chem. Soc. 121, 4278–4279 (1999).

    Article  CAS  Google Scholar 

  106. Hang, H.C. & Bertozzi, C.R. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering. J. Am. Chem. Soc. 123, 1242–1243 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, F.L. & Casey, P.J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Sylvers, L.A. & Wower, J. Nucleic acid-incorporated azidonucleotides: probes for studying the interaction of RNA or DNA with proteins and other nucleic acids. Bioconjug. Chem. 4, 411–418 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Malolanarasimhan, K. et al. Synthesis and biological study of a flavone acetic acid analogue containing an azido reporting group designed as a multifunctional binding site probe. Bioorg. Med. Chem. 13, 2717–2722 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Comstock, L.R. & Rajski, S.R. Efficient synthesis of azide-bearing cofactor mimics. J. Org. Chem. 69, 1425–1428 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Comstock, L.R. & Rajski, S.R. Conversion of DNA methyltransferases into azidonucleosidyl transferases via synthetic cofactors. Nucleic Acids Res. 33, 1644–1652 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Poteryaev, D., Squirrell, J.M., Campbell, J.M., White, J.G. & Spang, A. Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in C. elegans. Mol. Biol. Cell (2005).

  113. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Restituyo, J.A., Comstock, L.R., Petersen, S.G., Stringfellow, T. & Rajski, S.R. Conversion of aryl azides to O-alkyl imidates via modified Staudinger ligation. Org. Lett. 5, 4357–4360 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.A.P. is supported by a Howard Hughes Medical Institute predoctoral fellowship. We thank N. Agard, J. Baskin, I. Carrico, D. Dube, S. Laughlin and C. McVaugh for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn R Bertozzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prescher, J., Bertozzi, C. Chemistry in living systems. Nat Chem Biol 1, 13–21 (2005). https://doi.org/10.1038/nchembio0605-13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0605-13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing