Abstract
Benzylisoquinoline alkaloids (BIAs) are a diverse family of plant-specialized metabolites that include the pharmaceuticals codeine and morphine and their derivatives. Microbial synthesis of BIAs holds promise as an alternative to traditional crop-based manufacturing. Here we demonstrate the production of the key BIA intermediate (S)-reticuline from glucose in Saccharomyces cerevisiae. To aid in this effort, we developed an enzyme-coupled biosensor for the upstream intermediate L-3,4-dihydroxyphenylalanine (L-DOPA). Using this sensor, we identified an active tyrosine hydroxylase and improved its L-DOPA yields by 2.8-fold via PCR mutagenesis. Coexpression of DOPA decarboxylase enabled what is to our knowledge the first demonstration of dopamine production from glucose in yeast, with a 7.4-fold improvement in titer obtained for our best mutant enzyme. We extended this pathway to fully reconstitute the seven-enzyme pathway from L-tyrosine to (S)-reticuline. Future work to improve titers and connect these steps with downstream pathway branches, already demonstrated in S. cerevisiae, will enable low-cost production of many high-value BIAs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Accession codes
Primary accessions
NCBI Reference Sequence
Referenced accessions
NCBI Reference Sequence
References
Leonard, E., Runguphan, W., O'Connor, S. & Prather, K.J. Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat. Chem. Biol. 5, 292–300 (2009).
Koehn, F.E. & Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206–220 (2005).
Glenn, W.S., Runguphan, W. & O'Connor, S.E. Recent progress in the metabolic engineering of alkaloids in plant systems. Curr. Opin. Biotechnol. 24, 354–365 (2013).
Paterson, I. & Anderson, E.A. Chemistry. The renaissance of natural products as drug candidates. Science 310, 451–453 (2005).
Mora-Pale, M., Sanchez-Rodriguez, S.P., Linhardt, R.J., Dordick, J.S. & Koffas, M.A.G. Biochemical strategies for enhancing the in vivo production of natural products with pharmaceutical potential. Curr. Opin. Biotechnol. 25, 86–94 (2014).
Facchini, P.J. et al. Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol. 30, 127–131 (2012).
Arkin, A.P. & Fletcher, D.A. Fast, cheap and somewhat in control. Genome Biol. 7, 114 (2006).
Siddiqui, M.S., Thodey, K., Trenchard, I. & Smolke, C.D. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res. 12, 144–170 (2012).
Paddon, C.J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).
Hagel, J.M. & Facchini, P.J. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol. 54, 647–672 (2013).
Beaudoin, G.A.W. & Facchini, P.J. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240, 19–32 (2014).
Nakagawa, A. et al. A bacterial platform for fermentative production of plant alkaloids. Nat. Commun. 2, 326 (2011).
Nakagawa, A. et al. (R,S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci. Rep. 4, 6695 (2014).
Hawkins, K.M. & Smolke, C.D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol. 4, 564–573 (2008).
Fossati, E. et al. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat. Commun. 5, 3283 (2014).
Thodey, K., Galanie, S. & Smolke, C.D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10, 837–844 (2014).
Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl. Acad. Sci. USA 105, 7393–7398 (2008).
Mee, M.T., Collins, J.J., Church, G.M. & Wang, H.H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 111, E2149–E2156 (2014).
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
Lichman, B.R. et al. 'Dopamine-first' mechanism enables rational engineering of norcoclaurine synthase aldehyde activity profile. FEBS J. 282, 1137–1151 (2015).
Fitzpatrick, P.F. Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 68, 355–381 (1999).
Claus, H. & Decker, H. Bacterial tyrosinases. Syst. Appl. Microbiol. 29, 3–14 (2006).
Halaouli, S., Asther, M., Sigoillot, J.C., Hamdi, M. & Lomascolo, A. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J. Appl. Microbiol. 100, 219–232 (2006).
Gandía-Herrero, F., García-Carmona, F. & Escribano, J. Botany: floral fluorescence effect. Nature 437, 334 (2005).
Sasaki, N. et al. Detection of DOPA 4,5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa. Plant Cell Physiol. 50, 1012–1016 (2009).
Gandía-Herrero, F. & García-Carmona, F. Biosynthesis of betalains: yellow and violet plant pigments. Trends Plant Sci. 18, 334–343 (2013).
Gandía-Herrero, F., García-Carmona, F. & Escribano, J. A novel method using high-performance liquid chromatography with fluorescence detection for the determination of betaxanthins. J. Chromatogr. A 1078, 83–89 (2005).
Zhang, J.H., Chung, T. & Oldenburg, K. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).
Santos, C.N.S. & Stephanopoulos, G. Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 74, 1190–1197 (2008).
Lezzi, C., Bleve, G., Spagnolo, S., Perrotta, C. & Grieco, F. Production of recombinant Agaricus bisporus tyrosinase in Saccharomyces cerevisiae cells. J. Ind. Microbiol. Biotechnol. 39, 1875–1880 (2012).
Hernández-Romero, D., Sanchez-Amat, A. & Solano, F. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J. 273, 257–270 (2006).
Hatlestad, G.J. et al. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat. Genet. 44, 816–820 (2012).
Gandía-Herrero, F. & García-Carmona, F. Characterization of recombinant Beta vulgaris 4,5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains. Planta 236, 91–100 (2012).
Koyanagi, T. et al. Eukaryotic-type aromatic amino acid decarboxylase from the root colonizer Pseudomonas putida is highly specific for 3,4-dihydroxyphenyl-L-alanine, an allelochemical in the rhizosphere. Microbiology 158, 2965–2974 (2012).
Luttik, M.A.H. et al. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab. Eng. 10, 141–153 (2008).
Gandía-Herrero, F., Escribano, J. & García-Carmona, F. Characterization of the activity of tyrosinase on betanidin. J. Agric. Food Chem. 55, 1546–1551 (2007).
Dohm, J.C. et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505, 546–549 (2014).
Pieper, U. et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 42, D336–D346 (2014).
Sentheshanmuganathan, S. & Elsden, S.R. The mechanism of the formation of tyrosol by Saccharomyces cerevisiae. Biochem. J. 69, 210–218 (1958).
Pauli, H.H. & Kutchan, T.M. Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3′-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450–dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J. 13, 793–801 (1998).
Xiao, M. et al. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166, 122–134 (2013).
Minami, H., Dubouzet, E., Iwasa, K. & Sato, F. Functional analysis of norcoclaurine synthase in Coptis japonica. J. Biol. Chem. 282, 6274–6282 (2007).
Hazelwood, L.A., Daran, J.-M., van Maris, A.J.A., Pronk, J.T. & Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259–2266 (2008).
Fossati, E., Narcross, L., Ekins, A., Falgueyret, J.P. & Martin, V.J.J. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS ONE 10, e0124459 (2015).
Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).
Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).
Acknowledgements
We thank H. Lee for assistance with preliminary experiments; S. Bauer for LC/MS training; members of the Martin and Dueber Labs, in particular M. Lee, for valuable feedback throughout the project and in the preparation of the manuscript; and L. Bourgeois and J. Scrivens for their contribution in identifying NCS enzymes active in yeast. The work on engineering an enzyme-coupled biosensor was supported by the US Department of Energy Office of Science Early Career Research Program (Office of Biological and Environmental Research) under award number DE-SC0008084 (grant to J.E.D.), the US National Science Foundation (fellowship to W.C.D.) and the US Department of Defense (fellowship to Z.N.R.). Research in the Martin lab was financially supported by Genome Canada, Genome Québec and a Canada Research Chair (V.J.J.M.)
Author information
Authors and Affiliations
Contributions
W.C.D., Z.N.R., L.N., V.J.J.M. and J.E.D. designed the research. W.C.D. and Z.N.R. performed the experiments, and L.N. conducted chiral analysis. A.M.G. assisted in preliminary studies. W.C.D., Z.N.R. and L.N. analyzed the results. V.J.J.M. and J.E.D. supervised the research. W.C.D., V.J.J.M. and J.E.D. wrote the manuscript with editing help from Z.N.R. and L.N.
Corresponding author
Ethics declarations
Competing interests
W.C.D., Z.N.R., J.E.D., L.N. and V.J.J.M. declare competing financial interests in the form of a pending patent application, US application no. 62/094,877.
Supplementary information
Supplementary Text and Figures
Supplementary Results, Supplementary Figures 1–23 and Supplementary Tables 1–3. (PDF 19503 kb)
Rights and permissions
About this article
Cite this article
DeLoache, W., Russ, Z., Narcross, L. et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11, 465–471 (2015). https://doi.org/10.1038/nchembio.1816
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.1816