Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies

Abstract

Starburst galaxies at the peak of cosmic star formation1 are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas3 to be delivered to their cores, despite strong feedback from stars or active galactic nuclei4,5. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy6. The methylidyne cation, CH+, is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy7,8,9 or strong ultraviolet irradiation10,11. Here we report the detection of CH+ (J = 1–0) emission and absorption lines in the spectra of six lensed starburst galaxies12,13,14,15 at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas10. We find that the CH+ emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH+ absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers16 or cold-stream accretion17,18. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rest-frame 360-μm continuum images of our lensed targets.
Figure 2: CH+ J = 1–0 spectra of our lensed targets.

Similar content being viewed by others

References

  1. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014)

    Article  ADS  Google Scholar 

  2. Tacconi, L. J. et al. Submillimeter galaxies at z ~ 2: evidence for major mergers and constraints on lifetimes, IMF and CO-to-H2 conversion factor. Astrophys. J. 680, 246–262 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013)

    Article  ADS  CAS  Google Scholar 

  4. Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005)

    Article  ADS  Google Scholar 

  5. Förster Schreiber, N. M . et al. The SINS/zC-SINF survey of z ~ 2 galaxy kinematics: evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies. Astrophys. J. 787, 38 (2014)

    Article  ADS  Google Scholar 

  6. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015)

    Article  ADS  CAS  Google Scholar 

  7. Flower, D. & Pineau des Forêts, G. C-type shocks in the interstellar medium: profiles of CH+ and CH absorption lines. Mon. Not. R. Astron. Soc. 297, 1182–1188 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Lesaffre, P. et al. Low-velocity shocks: signatures of turbulent dissipation in diffuse irradiated gas. Astron. Astrophys. 550, A106 (2013)

    Article  Google Scholar 

  9. Godard, B., & Falgarone, E. & Pineau des Forêts, G. Chemical probes of turbulence in the diffuse medium: the TDR model. Astron. Astrophys. 570, A27 (2014)

    Article  Google Scholar 

  10. Godard, B. & Cernicharo, J. A complete model of CH+ rotational excitation including radiative and chemical pumping processes. Astron. Astrophys. 550, A8 (2013)

    Article  ADS  Google Scholar 

  11. Falgarone, E. et al. Strong CH+J = 1–0 emission and absorption in DR21. Astron. Astrophys. 518, L118 (2010)

    Article  ADS  Google Scholar 

  12. Eales, S. et al. The Herschel ATLAS. Publ. Astron. Soc. Pac. 122, 499–515 (2010)

    Article  ADS  Google Scholar 

  13. Negrello, M. et al. The detection of a population of submillimeter-bright, strongly lensed galaxies. Science 330, 800–804 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Bussmann, R. S. et al. Gravitational lens models based on submillimeter array imaging of Herschel-selected strongly lensed sub-millimeter galaxies at z > 1.5. Astrophys. J. 779, 25 (2013)

    Article  ADS  Google Scholar 

  15. Swinbank, A. M. et al. Intense star formation within resolved compact regions in a galaxy at z = 2.3. Nature 464, 733–736 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Engel, H. et al. Most submillimeter galaxies are major mergers. Astrophys. J. 724, 233–243 (2010)

    Article  ADS  Google Scholar 

  17. Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Narayanan, D. et al. The formation of submillimetre-bright galaxies from gas infall over a billion years. Nature 525, 496–499 (2015)

    Article  ADS  CAS  Google Scholar 

  19. Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015)

    Article  Google Scholar 

  20. George, R. D. et al. Herschel reveals a molecular outflow in a z = 2.3 ULIRG. Mon. Not. R. Astron. Soc. 442, 1877–1883 (2014)

    Article  ADS  CAS  Google Scholar 

  21. Harris, A. I. et al. Blind detections of CO J = 1–0 in 11 H-ATLAS galaxies at z = 2.1–3.5 with the GBT/Zpectrometer. Astrophys. J. 752, 152 (2012)

    Article  ADS  Google Scholar 

  22. Lupu, R. E. et al. Measurements of CO redshifts with Z-Spec for lensed submillimeter galaxies discovered in the H-ATLAS survey. Astrophys. J. 757, 135 (2012)

    Article  ADS  Google Scholar 

  23. Omont, A. et al. H2O emission in high-z ultra-luminous infrared galaxies. Astron. Astrophys. 551, A115 (2013)

    Article  Google Scholar 

  24. Swinbank, A. M. et al. The interstellar medium in distant star-forming galaxies: turbulent pressure, fragmentation, and cloud scaling relations in a dense gas disk at z = 2.3. Astrophys. J. 742, 11 (2011)

    Article  ADS  Google Scholar 

  25. Negrello, M. et al. Herschel-ATLAS: deep HST/WFC3 imaging of strongly lensed submillimetre galaxies. Mon. Not. R. Astron. Soc. 440, 1999–2012 (2014)

    Article  ADS  Google Scholar 

  26. Hollenbach, D. & McKee, C. F. Molecule formation and infrared emission in fast interstellar shocks. III. Results for J shocks in molecular clouds. Astrophys. J. 342, 306–336 (1989)

    Article  ADS  CAS  Google Scholar 

  27. Appleton, P. N. et al. Shock-enhanced C+ emission and the detection of H2O from the Stephan’s Quintet group-wide shock using Herschel. Astrophys. J. 777, 66 (2013)

    Article  ADS  Google Scholar 

  28. Bouché, N. et al. The impact of cold gas accretion above a mass floor on galaxy scaling relations. Astrophys. J. 718, 1001–1018 (2010)

    Article  ADS  Google Scholar 

  29. Borisova, E. et al. Ubiquitous giant Lyα nebulae around the brightest quasars at z ~ 3.5 revealed with MUSE. Astrophys. J. 831, 39 (2016)

    Article  ADS  Google Scholar 

  30. Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

  31. Danielson, A. L. R. et al. The properties of the interstellar medium within a star-forming galaxy at z = 2.3. Mon. Not. R. Astron. Soc. 410, 1687–1702 (2011)

    ADS  CAS  Google Scholar 

  32. Yang, C. et al. Submillimeter H2O and H2O+ emission in lensed ultra-luminous infrared galaxies at z ~ 2–4. Astron. Astrophys. 595, A80 (2016)

    Article  Google Scholar 

  33. Calanog, J. A. et al. Lens models of Herschel-selected galaxies from high-resolution near-IR observations. Astrophys. J. 797, 138 (2014)

    Article  ADS  Google Scholar 

  34. Douglas, A. E. & Herzberg, G. CH+ in interstellar space and in the laboratory. Astrophys. J. 94, 381 (1941)

    Article  ADS  CAS  Google Scholar 

  35. Falgarone, E. et al. CH+ (1–0) and 13CH+ (1–0) absorption lines in the direction of massive star-forming regions. Astron. Astrophys. 521, L15 (2010)

    Article  ADS  Google Scholar 

  36. Godard, B. et al. Comparative study of CH+ and SH+ absorption lines observed towards distant star-forming regions. Astron. Astrophys. 540, A87 (2012)

    Article  Google Scholar 

  37. Naylor, D. A. et al. First detection of the methylidyne cation (CH+) fundamental rotational line with the Herschel/SPIRE FTS. Astron. Astrophys. 518, L117 (2010)

    Article  ADS  Google Scholar 

  38. van der Werf, P. P. et al. Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231. Astron. Astrophys. 518, L42 (2010)

    Article  ADS  Google Scholar 

  39. Spinoglio, L. et al. Submillimeter line spectrum of the seyfert galaxy NGC 1068 from the Herschel-SPIRE Fourier transform spectrometer. Astrophys. J. 758, 108 (2012)

    Article  ADS  Google Scholar 

  40. Rangwala, N. et al. Observations of Arp 220 using Herschel-SPIRE: an unprecedented view of the molecular gas in an extreme star formation environment. Astrophys. J. 743, 94 (2011)

    Article  ADS  Google Scholar 

  41. Ritchey, A. M. et al. Diffuse atomic and molecular gas in the interstellar medium of M82 toward SN 2014. J. Astrophys. J. 799, 197 (2015)

    Article  ADS  CAS  Google Scholar 

  42. Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55–113 (2012)

    Article  ADS  Google Scholar 

  43. Kritsuk, A. G., Lee, C. T. & Norman, M. L. A supersonic turbulence origin of Larson’s laws. Mon. Not. R. Astron. Soc. 436, 3247–3261 (2013)

    Article  ADS  Google Scholar 

  44. Gerin, M. et al. [C II] absorption and emission in the diffuse interstellar medium across the Galactic plane. Astron. Astrophys. 573, A30 (2015)

    Article  Google Scholar 

  45. Bothwell, M. S. et al. Molecular gas as the driver of fundamental galactic relations. Mon. Not. R. Astron. Soc. 455, 1156–1170 (2016)

    Article  ADS  CAS  Google Scholar 

  46. Gonzalez-Alfonso, E., Smith, H. A., Fischer, J. & Cernicharo, J. The far-infrared spectrum of Arp 220. Astrophys. J. 613, 247–261 (2004)

    Article  ADS  CAS  Google Scholar 

  47. Martin, C. Mapping large-scale gaseous outflows in ultraluminous galaxies with Keck II ESI spectra: variations in outflow velocity with galactic mass. Astrophys. J. 621, 227–245 (2005)

    Article  ADS  CAS  Google Scholar 

  48. Ivison, R. J. et al. Tracing the molecular gas in distant submillimetre galaxies via CO(1–0) imaging with the Expanded Very Large Array. Mon. Not. R. Astron. Soc. 412, 1913–1925 (2011)

    Article  ADS  CAS  Google Scholar 

  49. Wisotzki, L. et al. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE. Astron. Astrophys. 587, A98 (2016)

    Article  Google Scholar 

  50. Guillard, P. et al. Turbulent molecular gas and star formation in the shocked intergalactic medium of Stephan’s Quintet. Astrophys. J. 749, 158 (2012)

    Article  ADS  Google Scholar 

  51. Shull, J. M., Stevans, M. & Danforth, C. W. HST-COS observations of AGNs. I. Ultraviolet composite spectra of the ionizing continuum and emission lines. Astrophys. J. 752, 162 (2012)

    Article  ADS  Google Scholar 

  52. van der Tak, F. F. S. A computer program for fast non-LTE analysis of interstellar line spectra. Astron. Astrophys. 468, 627–635 (2007)

    Article  ADS  Google Scholar 

  53. Omont, A. et al. Observation of H2O in a strongly lensed Herschel-ATLAS source at z = 2.32011. Astron. Astrophys. 530, L3 (2011)

    Google Scholar 

Download references

Acknowledgements

ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. R.J.I. acknowledges support from the ERC in the form of the Advanced Investigator Programme, 321302, COSMICISM. E.F. and B.G. acknowledge support from the national CNRS programme Physique et Chimie du Milieu Interstellaire (PCMI).

Author information

Authors and Affiliations

Authors

Contributions

E.F., E.B., F.B. and D.E. conceived the initial scientific argument and wrote the ALMA proposal with B.G., M.A.Z., P.M.A., A.O. and R.S.B. M.A.Z. reduced the ALMA data. B.G. and E.F. analysed the spectra. B.G. provided the results of the shock models. R.J.I., I.O. and F.W. were invited to join the team at a later stage to provide the results of the lens models (I.O.) and to contribute to a year-long debate on the data interpretation. E.F. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to E. Falgarone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Position–velocity diagrams of CH+emission and absorption along selected cuts across the sources.

The cuts are made along the east–west direction for G09v1.40, NAv1.56 and NAv1.144, along the long axis of the lensed images for the Eyelash, and along a northeast–southwest direction for SDP17b. CH+ emission appears in white (blue contours) and absorption in black (green contours). The first contour level and steps are 2σ. A velocity gradient is seen in the absorption of the Eyelash that is two times smaller than that detected in CO (ref. 24).

Extended Data Figure 2 CH+ emission and absorption overlaid on dust continuum emission for the Eyelash, SDP17b and G09v1.40.

The integrated emission (blue contours) and absorption (red contours) of the CH+ lines, with contour levels in steps of 2σ, are overlaid on continuum emission (grey scale). All of the images are lensed and so the differences between the distribution of dust continuum and CH+ line emission are affected by differential lensing.

Extended Data Figure 3

As in Extended Data Fig. 2, but for NAv1.56, NAv1.144 and SDP130. Only emission is detected for SDP130.

Extended Data Table 1 Additional properties of the lensed SMGs

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falgarone, E., Zwaan, M., Godard, B. et al. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies. Nature 548, 430–433 (2017). https://doi.org/10.1038/nature23298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing