Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detecting recovery of the stratospheric ozone layer

Abstract

As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Latitude–height cross section of stratospheric ozone and time series of chlorine in the troposphere and stratosphere.
Figure 2: Time series of observed total (column) ozone.
Figure 3: Time series of observed upper stratospheric annual mean ozone anomalies at 2 hPa (about 40 km) in three zonal latitude bands.
Figure 4: TOMCAT 3D model calculations of the per cent change in ozone at 40 km, 30 km and 20 km altitude and in the total column (TOZ) since 1960 for different assumptions in the ODS scenarios.
Figure 5: Observed and modelled 2000–2015 ozone trends (% per decade) from simple and multiple linear regressions for different regions.
Figure 6: Simulated global annual averaged total ozone response to changes in GHGs and ODSs from the GSFC two-dimensional chemistry–climate model.

Similar content being viewed by others

References

  1. Wayne, R. P. Chemistry of Atmospheres (Oxford Univ. Press, 2000)

  2. Molina, M. & Rowland, F. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810–812 (1974). This paper showed that CFCs could release chlorine in the stratosphere, which would lead to ozone depletion.

    Article  ADS  CAS  Google Scholar 

  3. Stolarski, R. S. & Cicerone, R. J. Stratospheric chlorine: a possible sink for ozone. Can. J. Chem. 52, 1610–1615 (1974). This paper reported that chlorine chemistry could catalytically destroy ozone.

    Article  CAS  Google Scholar 

  4. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985). This paper reports the discovery of the Antarctic ozone hole.

    Article  ADS  CAS  Google Scholar 

  5. World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project—Report No. 55 (World Meteorological Organization, 2014). This is the most recent of the quadrennial ozone assessments, and is a detailed summary of the state of the ozone layer.

  6. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Ko, M. K. W., Newman, P. A., Reimann, S. & Strahan, S. E. (eds) Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species (World Climate Research Programme, SPARC Report No. 6, WCRP-15/2013, 2013)

  8. Michelsen, H. A. et al. Stratospheric chlorine partitioning: Constraints from shuttle-borne measurements of [HCl], [ClNO3], and [ClO]. Geophys. Res. Lett. 23, 2361–2364 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Newman, P. A., Daniel, J. S., Waugh, D. W. & Nash, E. R. A new formulation of equivalent effective stratospheric chlorine (EESC). Atmos. Chem. Phys. 7, 4537–4552 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Butchart, N. et al. Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Clim. 23, 5349–5374 (2010)

    Article  ADS  Google Scholar 

  11. Haigh, J. D. & Pyle, J. A. Ozone perturbation experiments in a two-dimensional circulation model. Q. J. R. Meteorol. Soc. 108, 551–574 (1982)

    Article  ADS  CAS  Google Scholar 

  12. Jonsson, A. I., Fomichev, V. I. & Shepherd, T. G. The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes. Atmos. Chem. Phys. 9, 8447–8452 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Nisbet, E. G. et al. Rising atmospheric methane: 2007–14 growth and isotopic shift. Glob. Biogeochem. Cycles 30, 1356–1370 (2016)

    Article  ADS  CAS  Google Scholar 

  14. McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O. & Ilyas, M. Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem. Photobiol. Sci. 6, 218–231 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Montzka, S. A . et al. Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature 398, 690–694 (1999)

    Article  ADS  CAS  Google Scholar 

  16. World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project—Report No. 50. (World Meteorological Organization, 2007)

  17. Newchurch, M. J. et al. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. J. Geophys. Res. 108, 4507 (2003). A description of evidence for a slowdown in ozone loss in the upper stratosphere.

    Article  CAS  Google Scholar 

  18. Weatherhead, E. C. et al. Detecting the recovery of total column ozone. J. Geophys. Res. 105, 22201–22210 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Dobson, G. Forty years’ research on atmospheric ozone at Oxford: A history. Appl. Opt. 7, 387 (1968)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Staehelin, J. et al. Total ozone series at Arosa (Switzerland): Homogenization and data comparison. J. Geophys. Res. 103, 5827–5841 (1998)

    Article  ADS  CAS  Google Scholar 

  21. McPeters, R. D., Bhartia, P. K., Haffner, D., Labow, G. J. & Flynn, L. The version 8.6 SBUV ozone data record: An overview. J. Geophys. Res. 118, 8032–8039 (2013)

    Article  Google Scholar 

  22. Reinsel, G. C. et al. Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res. 110, D16306 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Zanis, P. et al. On the turnaround of stratospheric ozone trends deduced from the reevaluated Umkehr record of Arosa, Switzerland. J. Geophys. Res. 111, D22307 (2006)

    Article  ADS  Google Scholar 

  24. Dhomse, S., Weber, M., Wohltmann, I., Rex, M. & Burrows, J. P. On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003. Atmos. Chem. Phys. 6, 1165–1180 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Angell, J. K. & Free, M. Ground-based observations of the slowdown in ozone decline and onset of ozone increase. J. Geophys. Res. 114, D07303 (2009)

    ADS  Google Scholar 

  26. Chehade, W., Weber, M. & Burrows, J. P. Total ozone trends and variability during 1979–2012 from merged data sets of various satellites. Atmos. Chem. Phys. 14, 7059–7074 (2014)

    Article  ADS  CAS  Google Scholar 

  27. Nair, P. J. et al. Subtropical and midlatitude ozone trends in the stratosphere: Implications for recovery. J. Geophys. Res. 120, 7247–7257 (2015)

    Article  CAS  Google Scholar 

  28. Yang, E.-S. et al. Attribution of recovery in lower-stratospheric ozone. J. Geophys. Res. 111, D17309 (2006)

    Article  ADS  Google Scholar 

  29. Poberaj, C., Staehelin, J. & Brunner, D. Missing stratospheric ozone decrease at Southern Hemisphere middle latitudes after Mt. Pinatubo: a dynamical perspective. J. Atmos. Sci. 68, 1922–1945 (2011)

    Article  ADS  Google Scholar 

  30. Aquila, V., Oman, L. D., Stolarski, R., Douglass, A. R. & Newman, P. A. The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at Southern and Northern midlatitudes. J. Atmos. Sci. 70, 894–900 (2013)

    Article  ADS  Google Scholar 

  31. Dhomse, S. S. et al. Revisiting the hemispheric asymmetry in mid-latitude ozone changes following the Mount Pinatubo eruption: a 3-D model study. Geophys. Res. Lett. 42, 3038–3047 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fusco, A. C. & Salby, M. L. Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Clim. 12, 1619–1629 (1999)

    Article  ADS  Google Scholar 

  33. Weber, M. et al. The Brewer–Dobson circulation and total ozone from seasonal to decadal time scales. Atmos. Chem. Phys. 11, 11221–11235 (2011)

    Article  ADS  CAS  Google Scholar 

  34. Brönnimann, S., Luterbacher, J., Staehelin, J. & Svendby, T. M. An extreme anomaly in stratospheric ozone over Europe in 1940–1942. Geophys. Res. Lett. 31, L08101 (2004)

    Article  ADS  CAS  Google Scholar 

  35. Salby, M., Titova, E. & Deschamps, L. Rebound of Antarctic ozone. Geophys. Res. Lett. 38, L09702 (2011)

    Article  ADS  CAS  Google Scholar 

  36. Solomon, S. et al. Emergence of healing in the Antarctic ozone layer. Science 353, 269–274 (2016). This paper reported a decrease in Antarctic ozone depletion attributed to chlorine and bromine chemistry.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. de Laat, A. T. J., van der A, R. J. & van Weele, M. Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a ‘big data’ approach to multivariate regressions. Atmos. Chem. Phys. 15, 79–97 (2015)

  38. Kuttippurath, J. & Nair, P. J. The signs of Antarctic ozone hole recovery. Sci. Rep. 7, 585 (2017)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  39. Harris, N. R. P. et al. Past changes in the vertical distribution of ozone—Part 3: Analysis and interpretation of trends. Atmos. Chem. Phys. 15, 9965–9982 (2015). Recent analysis of vertically resolved stratospheric ozone trends.

    Article  ADS  CAS  Google Scholar 

  40. Millán, L. F. et al. Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding. Atmos. Chem. Phys. 16, 11521–11534 (2016)

    Article  ADS  CAS  Google Scholar 

  41. Toohey, M. & von Clarmann, T. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean. Atmos. Meas. Tech. 6, 937–948 (2013)

    Article  Google Scholar 

  42. Toohey, M. et al. Characterizing sampling biases in the trace gas climatologies of the SPARC Data Initiative. J. Geophys. Res. 118, 11847–11862 (2013)

    CAS  Google Scholar 

  43. Kirgis, G., Leblanc, T., McDermid, I. S. & Walsh, T. D. Stratospheric ozone interannual variability (1995–2011) as observed by lidar and satellite at Mauna Loa Observatory, HI and Table Mountain Facility, CA. Atmos. Chem. Phys. 13, 5033–5047 (2013)

    Article  ADS  CAS  Google Scholar 

  44. Nair, P. J. et al. Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station. Atmos. Chem. Phys. 13, 10373–10384 (2013)

    Article  ADS  CAS  Google Scholar 

  45. Vigouroux, C. et al. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmos. Chem. Phys. 15, 2915–2933 (2015)

    Article  ADS  CAS  Google Scholar 

  46. Froidevaux, L. et al. Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3. Atmos. Chem. Phys. 15, 10471–10507 (2015)

    Article  ADS  CAS  Google Scholar 

  47. Davis, S. M. et al. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies. Earth Syst. Sci. Data 8, 461–490 (2016)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Sofieva, V. F. et al. Harmonized dataset of ozone profiles from satellite limb and occultation measurements. Earth Syst. Sci. Data 5, 349–363 (2013)

    Google Scholar 

  49. Sioris, C. E. et al. Trend and variability in ozone in the tropical lower stratosphere over 2.5 solar cycles observed by SAGE II and OSIRIS. Atmos. Chem. Phys. 14, 3479–3496 (2014)

    Article  ADS  CAS  Google Scholar 

  50. Kyrölä, E. et al. Combined SAGE II–GOMOS ozone profile data set for 1984–2011 and trend analysis of the vertical distribution of ozone. Atmos. Chem. Phys. 13, 10645–10658 (2013)

    Article  ADS  CAS  Google Scholar 

  51. Frith, S. M. et al. Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set. J. Geophys. Res. 119, 9735–9751 (2014)

    Article  CAS  Google Scholar 

  52. Hubert, D. et al. Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech. 9, 2497–2534 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tegtmeier, S. et al. SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounders. J. Geophys. Res. 118, 12229–12247 (2013)

    Article  Google Scholar 

  54. Rahpoe, N. et al. Relative drifts and biases between six ozone limb satellite measurements from the last decade. Atmos. Meas. Tech. 8, 4369–4381 (2015)

    Article  Google Scholar 

  55. Eckert, E. et al. Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements. Atmos. Chem. Phys. 14, 2571–2589 (2014)

    Article  ADS  CAS  Google Scholar 

  56. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)

    Article  ADS  Google Scholar 

  57. Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011)

    Article  ADS  Google Scholar 

  58. Chipperfield, M. P. New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q. J. R. Meteorol. Soc. 132, 1179–1203 (2006)

    Article  ADS  Google Scholar 

  59. Shepherd, T. G. et al. Reconciliation of halogen-induced ozone loss with the total-column ozone record. Nat. Geosci. 7, 443–449 (2014). This paper demonstrated the overall global agreement between long-term ozone changes and variations in stratospheric chlorine and bromine.

    Article  ADS  CAS  Google Scholar 

  60. Yang, E.-S. et al. First stage of Antarctic ozone recovery. J. Geophys. Res. 113, D20308 (2008). The discovery of decreasing ozone loss in the Antarctic ozone hole.

    Article  ADS  CAS  Google Scholar 

  61. Charlton-Perez, A. J. et al. The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century. Atmos. Chem. Phys. 10, 9473–9486 (2010)

    Article  ADS  CAS  Google Scholar 

  62. Simmons, A. et al. ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci. 62, 668–689 (2005)

    Article  ADS  Google Scholar 

  63. Feng, W. et al. Three-dimensional model study of the Antarctic ozone hole in 2002 and comparison with 2000. J. Atmos. Sci. 62, 822–837 (2005)

    Article  ADS  Google Scholar 

  64. Stolarski, R. S., McPeters, R. D. & Newman, P. A. The ozone hole of 2002 as measured by TOMS. J. Atmos. Sci. 62, 716–720 (2005)

    Article  ADS  Google Scholar 

  65. Ivy, D. J. et al. The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model. Geophys. Res. Lett. 44, 2556–2561 (2017)

    Article  ADS  CAS  Google Scholar 

  66. Manney, G. L. et al. Unprecedented Arctic ozone loss in 2011. Nature 478, 469–475 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Chipperfield, M. P. et al. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun. 6, 7233 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Eyring, V. et al. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys. 10, 9451–9472 (2010)

    Article  ADS  CAS  Google Scholar 

  69. Abalos, M., Legras, B., Ploeger, F. & Randel, W. J. Evaluating the advective Brewer–Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. 120, 7534–7554 (2015)

    Article  Google Scholar 

  70. World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52 (World Meteorological Organization, 2011)

  71. Weatherhead, E. C. & Andersen, S. B. The search for signs of recovery of the ozone layer. Nature 441, 39–45 (2006). The paper that established the long timescales needed to detect ozone recovery in different regions.

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017)

  73. Revell, L. E., Bodeker, G. E., Huck, P. E., Williamson, B. E. & Rozanov, E. The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4 . Atmos. Chem. Phys. 12, 11309–11317 (2012)

    Article  ADS  CAS  Google Scholar 

  74. Kreher, K., Bodeker, G. E. & Sigmond, M. An objective determination of optimal site locations for detecting expected trends in upper-air temperature and total column ozone. Atmos. Chem. Phys. 15, 7653–7665 (2015)

    Article  ADS  CAS  Google Scholar 

  75. Eyring, V. et al. Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. 118, 5029–5060 (2013)

    Article  CAS  Google Scholar 

  76. Bednarz, E. M. et al. Future Arctic ozone recovery: the importance of chemistry and dynamics. Atmos. Chem. Phys. 16, 12159–12176 (2016)

    Article  ADS  CAS  Google Scholar 

  77. Rex, M. et al. Arctic ozone loss and climate change. Geophys. Res. Lett. 31, L04116 (2004)

    Article  ADS  CAS  Google Scholar 

  78. Newman, P. A., Coy, L., Pawson, S. & Lait, L. R. The anomalous change in the QBO in 2015–16. Geophys. Res. Lett. 43, 8791–8797 (2016)

    Article  ADS  Google Scholar 

  79. Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 353, 1424–1427 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. McCormick, M. P., Thomason, L. W. & Trepte, C. R. Atmospheric effects of the Mt Pinatubo eruption. Nature 373, 399–404 (1995)

    Article  ADS  CAS  Google Scholar 

  81. Dhomse, S. S. et al. On the ambiguous nature of the 11 year solar cycle signal in upper stratospheric ozone. Geophys. Res. Lett. 43, 7241–7249 (2016)

    Article  ADS  Google Scholar 

  82. Hossaini, R. et al. Growth in stratospheric chlorine from short-lived chemicals not controlled by the Montreal Protocol. Geophys. Res. Lett. 42, 4573–4580 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leedham Elvidge, E. C. et al. Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998–2012. Atmos. Chem. Phys. 15, 1939–1958 (2015)

    Article  ADS  CAS  Google Scholar 

  84. Sinnhuber, B.-M. & Meul, S. Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends. Geophys. Res. Lett. 42, 2449–2456 (2015)

    Article  ADS  CAS  Google Scholar 

  85. Hossaini, R. et al. The increasing threat to stratospheric ozone from dichloromethane. Nat. Commun. 8, 15962 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A. & Rasch, P. J. Impact of geoengineered aerosols on the troposphere and stratosphere. J. Geophys. Res. 114, D12305 (2009)

    Article  ADS  CAS  Google Scholar 

  87. Nowack, P. J., Abraham, N. L., Braesicke, P. & Pyle, J. A. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. Atmos. Chem. Phys. 16, 4191–4203 (2016)

    Article  ADS  CAS  Google Scholar 

  88. Fleming, E. L., Jackman, C. H., Stolarski, R. S. & Douglass, A. R. A model study of the impact of source gas changes on the stratosphere for 1850–2100. Atmos. Chem. Phys. 11, 8515–8541 (2011)

    Article  ADS  CAS  Google Scholar 

  89. Froidevaux, L. et al. Validation of Aura Microwave Limb Sounder stratospheric ozone measurements. J. Geophys. Res. 113, D15S20 (2008)

    ADS  Google Scholar 

  90. Lawrence, M. G., Jöckel, P. & von Kuhlmann, R. What does the global mean OH concentration tell us? Atmos. Chem. Phys. 1, 37–49 (2001)

    Article  ADS  CAS  Google Scholar 

  91. Montzka, S. A. et al. Recent trends in global emissions of hydrofluorocarbons and hydrofluorocarbons: Reflecting on the 2007 adjustments to the Montreal Protocol. J. Phys. Chem. A 119, 4439–4449 (2015)

    Article  CAS  PubMed  Google Scholar 

  92. Wild, J. D ., Long, C. S ., Barthia, P. K. & McPeters, R. D. Constructing a long-term ozone climate data set (1979–2010) from V8.6 SBUV/2 profiles. Quadrennial Ozone Symp. (2012)

  93. Coldewey-Egbers, M. et al. The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record from the ESA Climate Change Initiative. Atmos. Meas. Tech. 8, 3923–3940 (2015)

    Article  Google Scholar 

  94. Bojkov, R. D. et al. Vertical ozone distribution characteristics deduced from ~44,000 re-evaluated Umkehr profiles (1957–2000). Meteorol. Atmos. Phys. 79, 127–158 (2002)

    Article  ADS  Google Scholar 

  95. Blunden, J. & Arndt, D. S. (eds) State of the climate in 2015. Bull. Am. Meteorol. Soc. 97 (Suppl.) (2016)

  96. Newman, P. A. et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 9, 2113–2128 (2009)

    Article  ADS  CAS  Google Scholar 

  97. Garcia, R. R., Kinnison, D. E. & Marsh, D. R. World avoided simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res. 117, D23303 (2012)

    ADS  Google Scholar 

  98. Egorova, T., Rozanov, E., Gröbner, J., Hauser, M. & Schmutz, W. Montreal protocol benefits simulated with CCM SOCOL. Atmos. Chem. Phys. 13, 3811–3823 (2013)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Pyle and P. Newman for comments on this work; A. Schmidt for comments on an early version of the manuscript; E. Fleming for providing Fig. 6; and W. Feng for help with TOMCAT. The TOMCAT modelling work was supported by the NERC National Centre for Atmospheric Science (NCAS) and the simulations were performed on the Archer and Leeds ARC/N8 computers. M.P.C. acknowledges support of a Royal Society Wolfson Merit Award. M.W. acknowledges partial support from the Deutsche Forschungsgemeinschaft (DFG) Research Unit SHARP (Stratospheric Change and its Role for Climate Prediction) and the ESA CCI-Ozone project. R.T. acknowledges funding by the LABEX L-IPSL project (grant ANR-10-LABX-18-01). S.B. and N.R.P.H. were partially supported by the European project StratoClim (603557 under programme FP7-ENV.2013.6.1-2). N.R.P.H. also acknowledges support from NERC CAST (NE/I030051/1).

Author information

Authors and Affiliations

Authors

Contributions

M.P.C. initiated the study and recruited the author team. All authors contributed to the writing of the paper. M.P.C. and S.D. ran and analysed the TOMCAT simulations. S.B., R.T. and M.W. performed the MLR studies. R.H., M.W., W.S., S.D., R.T. and M.P.C. produced the figures.

Corresponding author

Correspondence to Martyn P. Chipperfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks M. Santee and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text, additional references, Supplementary Table 1 and Supplementary Figures 1-2. (PDF 561 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipperfield, M., Bekki, S., Dhomse, S. et al. Detecting recovery of the stratospheric ozone layer. Nature 549, 211–218 (2017). https://doi.org/10.1038/nature23681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing