Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional electron gas with universal subbands at the surface of SrTiO3

Abstract

As silicon is the basis of conventional electronics, so strontium titanate (SrTiO3) is the foundation of the emerging field of oxide electronics1,2. SrTiO3 is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces3,4,5 that have metal–insulator transitions6,7, superconductivity8,9 or large negative magnetoresistance10. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties11,12, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO3 (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of 0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO3-based heterostructures6,8,13 and field-effect transistors9,14 suggests that different forms of electron confinement at the surface of SrTiO3 lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO3-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic structure of SrTiO 3 and effects of electron confinement.
Figure 2: Universal electronic structure at the surface of SrTiO3.
Figure 3: Summary of subbands for the 2DEG at the surface of SrTiO3.
Figure 4: Fermi surface of 2DEG at the surface of SrTiO3.

Similar content being viewed by others

References

  1. Ramirez, A. P. Oxide electronics emerge. Science 315, 1377–1378 (2007)

    Article  Google Scholar 

  2. Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science 323, 1026–1030 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3 /SrTiO3 heterointerface. Nature 427, 423–426 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Ahn, C. H., Triscone, J.-M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Thiel, S., Hammer, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nature Mater. 7, 298–302 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2006)

    Article  ADS  Google Scholar 

  9. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Okamoto, S. & Millis, A. J. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Popović, Z. S., Satpathy, S. & Martin, R. M. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. Phys. Rev. Lett. 101, 256801 (2008)

    Article  ADS  Google Scholar 

  13. Basletic, M. et al. Mapping the spatial distribution of charge carriers in LaAlO3 /SrTiO3 heterostructures. Nature Mater. 7, 621–625 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Nakamura, H. et al. Tuning of metal-insulator transition of two-dimensional electrons at parylene/SrTiO3 interface by electric field. J. Phys. Soc. Jpn 78, 083713 (2009)

    Article  ADS  Google Scholar 

  15. Mattheiss, L. F. Energy bands for KNiF3, SrTiO3, KMoO3 and KTaO3 . Phys. Rev. B 6, 4718–4740 (1972)

    Article  ADS  CAS  Google Scholar 

  16. Fujimori, A. et al. Doping-induced changes in the electronic structure of La x Sr1−x TiO3: limitation of the one-electron rigid-band model and the Hubbard model. Phys. Rev. B 46, 9841–9844 (1992)

    Article  ADS  CAS  Google Scholar 

  17. Aiura, Y. et al. Photoemission study of the metallic state of lightly electron-doped SrTiO3 . Surf. Sci. 515, 61–74 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Ishida, Y. et al. Coherent and incoherent excitations of electron-doped SrTiO3 . Phys. Rev. Lett. 100, 056401 (2008)

    Article  ADS  Google Scholar 

  19. Chang, Y. J., Bostwick, A., Kim, Y. S., Horn, K. & Rotenberg, E. Structure and correlation effects in semiconducting SrTiO3 . Phys. Rev. B 81, 235109 (2010)

    Article  ADS  Google Scholar 

  20. Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Lytle, F. W. X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys. 35, 2212–2215 (1964)

    Article  ADS  CAS  Google Scholar 

  22. Mattheiss, L. F. Effect of the 110°K transition on the SrTiO3 conduction bands. Phys. Rev. B 6, 4740–4753 (1972)

    Article  ADS  CAS  Google Scholar 

  23. Barret, H. H. Dielectric breakdown of single-crystal strontium titanate. J. Appl. Phys. 35, 1420–1425 (1964)

    Article  ADS  Google Scholar 

  24. Copie, O. et al. Towards two-dimensional metallic behavior at LaAlO3 /SrTiO3 interfaces. Phys. Rev. Lett. 102, 216804 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Seo, S. S. A. et al. Multiple conducting carriers generated in LaAlO3 /SrTiO3 heterostructures. Appl. Phys. Lett. 95, 082107–082109 (2009)

    Article  ADS  Google Scholar 

  26. Sing, M. et al. Profiling the interface electron gas of LaAlO3 /SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy. Phys. Rev. Lett. 102, 176805 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Pentcheva, R. & Pickett, W. E. Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO3 /SrTiO3 interface. Phys. Rev. B 78, 205106 (2008)

    Article  ADS  Google Scholar 

  28. Salluzzo, M. et al. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3 /SrTiO3 interface. Phys. Rev. Lett. 102, 166804 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Xie, Y., Bell, C., Yajima, T., Hikita, Y. & Hwang, H. Y. Charge writing at the LaAlO3 /SrTiO3 surface. Nano Lett. 10, 25882591 (2010)

    Google Scholar 

Download references

Acknowledgements

We are grateful to N. Bontemps, R. Claessen, Y. Fagot-Revurat, M. Gabay, I. C. Infante, D. Malterre, A. J. Millis and F. Reinert for discussions, to E. Jacquet for help with the sample preparation and to R. Guerrero for help with the transport measurements. This work was supported by the ANR OXITRONICS and the CNRS-CSIC PICS ‘POSTIT’ project under grant number PICS2008FR1. The Synchrotron Radiation Center, University of Wisconsin-Madison, is supported by the National Science Foundation under award no. DMR-0537588. The Ames Laboratory is operated for the US DOE by Iowa State University under contract number W-7405-ENG-82. R.W. is a research fellow of CONICET-Argentina, supported by CONICET (grant PIP 112-200801-00047) and ANPCyT grant PICT 837/07. X.G.Q. is supported by the MOST and NSF of China, and G.H. is supported by the Spanish Government under project numbers MAT2008-06761-C03 and NANOSELECT CSD2007-00041.

Author information

Authors and Affiliations

Authors

Contributions

A.F.S.-S. and O.C. contributed equally to this work, from project conception and ARPES measurements to data analysis, interpretation and writing of the manuscript. The contributions of other authors are as follows. Project conception: G.H., M.B., A.B., M.J.R.; ARPES measurements: T.K., F.F., S.P., F.B., A.N.; infrastructure for ARPES experiments at SOLEIL: F.B., A.T.-I., P.L.F.; samples: X.G.Q., G.H., M.B., Y.A., P.L., A.B.; transport measurements: N.R., Y.A.; data analysis, interpretation, slab-LDA calculations: R.W., M.J.R.; input to writing the manuscript: M.J.R. All authors extensively discussed the results and the manuscript.

Corresponding author

Correspondence to A. F. Santander-Syro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, sections 1-7, Supplementary Table 1, Supplementary Figures 1-6 with legends and additional references. (PDF 1621 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santander-Syro, A., Copie, O., Kondo, T. et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3 . Nature 469, 189–193 (2011). https://doi.org/10.1038/nature09720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing