Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the guide-strand-containing argonaute silencing complex

Abstract

The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5′-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson–Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas two critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5′-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3′-end-binding pocket made up of the PAZ domain show little effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of T. thermophilus argonaute bound to a 5′-phosphorylated 21-base DNA guide strand.
Figure 2: Intermolecular hydrogen-bonding alignments in the T. thermophilus Ago bound to a 21-base DNA guide strand.
Figure 3: Conformational changes in T. thermophilus Ago on formation of the 21-base DNA guide strand complex.
Figure 4: DNA-guide-dependent RNA cleavage activity of wild-type and mutant T. thermophilus Ago.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The structures of T. thermophilus Ago bound to 5′-phosphorylated 21-base and 10-base DNAs have been deposited to the Protein Data Bank under accession codes 3DLH and 3DLB, respectively.

References

  1. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Filipowicz, W. The nuts and bolts of the RISC machine. Cell 122, 17–20 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Rana, T. M. Illuminating the silence: understanding the structure and function of small RNAs. Nature Rev. Mol. Cell Biol. 8, 23–36 (2007)

    Article  CAS  Google Scholar 

  4. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8, 173–184 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. De Fougerolles, A., Vornlocher, H.-P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nature Rev. Drug. Discov. 6, 443–453 (2007)

    Article  CAS  Google Scholar 

  6. Hall, T. M. Structure and function of Argonaute proteins. Structure 13, 1403–1408 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Tomari, Y. & Zamore, P. D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005)

    CAS  PubMed  Google Scholar 

  8. Tolia, N. H. & Joshua-Tor, L. Slicer and the argonautes. Nature Chem. Biol. 3, 36–43 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. Nature Rev. Mol. Cell Biol. 9, 22–32 (2008)

    Article  CAS  Google Scholar 

  10. Parker, J. S. & Barford, D. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem. Sci. 31, 622–630 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Patel, D. J. et al. Structural biology of RNA silencing and its functional implications. Cold Spring Harb. Symp. Quant. Biol. 71, 81–93 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Rivas, F. V. et al. Purified Ago2 and an siRNA form recombinant human RISC. Nature Struct. Mol. Biol. 12, 340–349 (2005)

    Article  CAS  Google Scholar 

  14. Yuan, Y. R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 19, 405–419 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, Y. R. et al. A potential protein–RNA recognition event along the RISC loading pathway from the structure of A. aeolicus Ago with externally bound siRNA. Structure 14, 1557–1565 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doench, J. G. & Sharp, P. A. Specificity of miRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004)

    Article  CAS  Google Scholar 

  18. Lewis, B. P. et al. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Stark, A., Brennecke, J., Russel, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, 397–409 (2003)

    Article  CAS  Google Scholar 

  20. Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature 434, 663–666 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma, J. B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, J., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the Paz domain. Nature 429, 318–322 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 Paz domain. Nature Struct. Mol. Biol. 11, 576–577 (2004)

    CAS  Google Scholar 

  24. Nowotny, M., Gaidamakov, S. A., Crouch, R. J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Chiu, Y. L. & Rana, T. M. RNAi in human cells: Basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martinez, J. & Tuschl, T. RISC is a 5′-phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parker, J. S., Roe, S. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, J. et al. Argonaute2 is the catalytic engine of RNAi. Science 305, 1437–1441 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Terwilliger, T. C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D 59, 38–44 (2003)

    Article  PubMed  Google Scholar 

  34. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  36. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. The CCCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  38. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  39. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. & Tuschl, T. Single-stranded anti-sense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by funds from the NIH to D.J.P. and T.T. We thank the staff of NE-CAT beam line at the Advanced Photon Source, Argonne National Laboratory, supported by the US Department of Energy, for assistance with data collection.

Author Contributions Y.W. and G.S. expressed and purified T. thermophilus Ago and its mutants, and grew crystals of the complex. Y.W. collected X-ray diffraction data and solved the structure of the complex. The structural studies were undertaken under the supervision of D.J.P. S.J. was responsible for the cleavage assays on the wild-type and mutant Agos under the supervision of T.T. All authors read and approved the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinshaw J. Patel.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary Table 1 and Supplementary Figures 1-12 with Legends. (PDF 8508 kb)

Supplementary Movie 1

The file contains Supplementary Movie 1, rotating Fig. 1c. (AVI 22223 kb)

Supplementary Movie 2

The file contains Supplementary Movie 2, which visualizes the transition between Fig. 3a and Fig. 1c. (AVI 4515 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Sheng, G., Juranek, S. et al. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008). https://doi.org/10.1038/nature07315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07315

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing