Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation

Abstract

MicroRNAs (miRs) inhibit protein synthesis by mechanisms that are as yet unresolved1,2,3,4,5,6,7,8,9,10,11. We developed a cell-free system from Drosophila melanogaster embryos that faithfully recapitulates miR2-mediated translational control by means of the 3′ untranslated region of the D. melanogaster reaper messenger RNA. Here we show that miR2 inhibits translation initiation without affecting mRNA stability. Surprisingly, miR2 induces the formation of dense (heavier than 80S) miRNPs (‘pseudo-polysomes’) even when polyribosome formation and 60S ribosomal subunit joining are blocked. An mRNA bearing an ApppG instead of an m7GpppG cap structure escapes the miR2-mediated translational block. These results directly show the inhibition of m7GpppG cap-mediated translation initiation as the mechanism of miR2 function, and uncover pseudo-polysomal messenger ribonucleoprotein assemblies that may help to explain earlier findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translational repression of a miR2 reporter mRNA in vitro.
Figure 2: miR2 inhibits 80S complex formation and induces heavy mRNP assemblies.
Figure 3: miR2 induces the formation of heavy mRNP assemblies even when 60S ribosomal subunit joining is blocked.
Figure 4: The m 7 GpppN cap structure is essential for miR2-mediated translational repression but not for the formation of ‘pseudo-polysomes’.

Similar content being viewed by others

References

  1. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006)

    Article  CAS  Google Scholar 

  2. Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol. 13, 1108–1114 (2006)

    Article  CAS  Google Scholar 

  3. Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol. 13, 1102–1107 (2006)

    Article  CAS  Google Scholar 

  4. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999)

    Article  CAS  Google Scholar 

  5. Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002)

    Article  CAS  Google Scholar 

  6. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA 102, 16961–16966 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA 103, 4034–4039 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005)

    Article  CAS  Google Scholar 

  10. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  Google Scholar 

  11. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  CAS  Google Scholar 

  14. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Sen, G. L. & Blau, H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biol. 7, 633–636 (2005)

    Article  CAS  Google Scholar 

  18. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol. 7, 719–723 (2005)

    Article  CAS  Google Scholar 

  19. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila MicroRNA targets. PLoS Biol. 1, 397–409 (2003)

  20. Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108 (2005)

    Article  CAS  Google Scholar 

  21. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197 (1999)

    Article  CAS  Google Scholar 

  23. Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13, 3882–3891 (1994)

    Article  CAS  Google Scholar 

  25. Gebauer, F., Grskovic, M. & Hentze, M. W. Drosophila sex-lethal inhibits the stable association of the 40S ribosomal subunit with msl-2 mRNA. Mol. Cell 11, 1397–1404 (2003)

    Article  CAS  Google Scholar 

  26. Hershey, J. W. & Monro, R. E. A competitive inhibitor of the GTP reaction in protein synthesis. J. Mol. Biol. 18, 68–76 (1966)

    Article  CAS  Google Scholar 

  27. Anthony, D. D. & Merrick, W. C. Analysis of 40 S and 80 S complexes with mRNA as measured by sucrose density gradients and primer extension inhibition. J. Biol. Chem. 267, 1554–1562 (1992)

    CAS  PubMed  Google Scholar 

  28. Beckmann, K., Grskovic, M., Gebauer, F. & Hentze, M. W. A dual inhibitory mechanism restricts msl-2 mRNA translation for dosage compensation in Drosophila. Cell 122, 529–540 (2005)

    Article  CAS  Google Scholar 

  29. Chekulaeva, M., Hentze, M. W. & Ephrussi, A. Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell 124, 521–533 (2006)

    Article  CAS  Google Scholar 

  30. Thoma, C. et al. Enhancement of IRES-mediated translation of the c-myc and BiP mRNAs by the poly(A) tail is independent of intact eIF4G and PABP. Mol. Cell 15, 925–935 (2004)

    Article  CAS  Google Scholar 

  31. Preiss, T., Muckenthaler, M. & Hentze, M. W. Poly(A)-tail-promoted translation in yeast: implications for translational control. RNA 4, 1321–1331 (1998)

    Article  CAS  Google Scholar 

  32. Ostareck, D. H. et al. Lipoxygenase mRNA silencing in erythroid differentiation: The 3′UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290 (2001)

    Article  CAS  Google Scholar 

  33. Valoczi, A. et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Cohen and J. Brennecke for advice, and R. Jackson and the members of the Hentze laboratory for discussions. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to M.W.H.

Author Contributions R.T. performed the experiments. R.T. and M.W.H. designed, analysed and interpreted the experiments and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias W. Hentze.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Thus file contains Supplementary Figures 1-8 with Legends, Supplementary Tables 1-2 and additional references. (PDF 4237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thermann, R., Hentze, M. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878 (2007). https://doi.org/10.1038/nature05878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing