Abstract
The retina has long been regarded as ‘an approachable part of the brain’ for investigating neurosensory processes. Cell biologists are now capitalizing on the accessibility of the retina to investigate important aspects of developmental angiogenesis, including how it relates to neuronal and glial development, morphogenesis, oxygen sensing and progenitor cells. Pathological angiogenesis also occurs in the retina and is a major feature of leading blinding diseases, particularly diabetic retinopathy. The retina and its clinical disorders have a pivotal role in angiogenesis research and provide model systems in which to investigate neurovascular relationships and angiogenic diseases.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Michaelson, I. C. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans. Ophthalmol. Soc. UK 68, 137–181 (1948).
Connolly, S. E., Hores, T. A., Smith, L. E. & D'Amore, P. A. Characterization of vascular development in the mouse retina. Microvasc. Res. 36, 275–290 (1988).
Gariano, R. F. Cellular mechanisms in retinal vascular development. Prog. Retinal Eye Res. 22, 295–306 (2003).
Flower, R. W., McLeod, D. S., Lutty, G. A, Goldberg, B. & Wajer, S. D. Postnatal retinal vascular development of the puppy. Invest. Ophthalmol. Vis. Sci. 26, 957–968 (1985).
Chan-Ling, T. L., Halasz, P. & Stone, J. Development of retinal vasculature in the cat: processes and mechanisms. Curr. Eye Res. 9, 459–478 (1990).
Ashton, N. Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The XX Francis I. Proctor Lecture. Am. J. Ophthalmol. 62, 412–435 (1966).
Wise, G. N. Factors influencing retinal new vessel formation. Am. J. Ophthalmol. 52, 637–650 (1961).
Chan-Ling, T., Gock, B. & Stone, J. The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest. Ophthalmol. Vis. Sci. 36, 1201–1214 (1995).
Phelps, D. L. Oxygen and developmental retinal capillary remodeling in the kitten. Invest. Ophthalmol. Vis. Sci. 31, 2194–2200 (1990).
Stone, J. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738–4747 (1995).
Ozaki, H. et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am. J. Pathol. 156, 697–707 (2000).
Provis, J. M. et al. Development of the human retinal vasculature: cellular relations and VEGF expression. Exp. Eye Res. 65, 555–568 (1997).
Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P. & Smith, L. E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl Acad. Sci. USA 92, 905–909 (1995).
Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002).
Claxton, S. & Fruttiger, M. Role of arteries in oxygen induced vaso-obliteration. Exp. Eye Res. 77, 305–311 (2003).
Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med. 1, 1024–1028 (1995).
Ishida, S. et al. Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nature Med. 9, 781–788 (2003).
Curatola, A. M., Moscatelli, D., Norris, A. & Hendricks-Munoz, K. Retinal blood vessels develop in response to local VEGF-A signals in the absence of blood flow. Exp. Eye Res. 81, 147–158 (2005).
Shih, S. C., Ju, M., Liu, N. & Smith, L. E. Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J. Clin. Invest. 112, 50–57 (2003).
Gariano, R. F., Hu, D. & Helms, J. Expression of angiogenesis-related genes during retinal development. Mech. Dev. Gene Exp. Patterns (in the press).
Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).
Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).
Feeney, S. A. et al. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression. Invest. Ophthalmol. Vis. Sci. 44, 839–847 (2003).
Sarlos, S. et al. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am. J. Pathol. 163, 879–887 (2003).
Dawson, D. W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).
Jaakkola, P. et al. Targeting of HIF-± to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).
Ohh, M. et al. Ubiquitination of hypoxia–inducible factor requires direct binding to the M-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423–427 (2000).
Rankin, E. B. et al. Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-associated vascular tumors in mice. Mol. Cell Biol. 25, 3163–3172 (2005).
Ma, W. et al. Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res. 63, 5320–5328 (2003).
Ding, K., Scortegagna, M., Seaman, R., Birch, D. G. & Garcia, J. A. Retinal disease in mice lacking hypoxia-inducible transcription factor-24. Invest. Ophthalmol. Vis. Sci. 46, 1010–1016 (2005).
Ozaki, H. et al. Hypoxia inducible factor-14 is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest. Ophthalmol. Vis. Sci. 40, 182–189 (1999).
Watanabe, T. & Raff, M. C. Retinal astrocytes are immigrants from the optic nerve. Nature 332, 834–837 (1988).
Gariano, R. F., Sage, E. H., Kaplan, H. J. & Hendrickson, A. E. Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest. Ophthalmol. Vis. Sci. 37, 2367–2375 (1996).
Dorrell, M. I., Aguilar, E. & Friedlander, M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest. Ophthalmol. Vis. Sci. 43, 3500–3510 (2002).
Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).
Fruttiger, M. et al. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17, 1117–1131 (1996).
Miyawaki, T. et al. Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J. Neurosci. 24, 8124–8134 (2004).
West, H., Richardson, M. W. D. & Fruttiger, M. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development 132, 1855–1862 (2005).
Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).
Darland, D. C. et al. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 264, 275–288 (2003).
Shih, S. C. et al. Transforming growth factor β1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc. Natl Acad. Sci. USA 100, 15859–15864 (2003).
Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R. & D'Amore, P. A. An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc. Natl Acad. Sci. USA 86, 4544–4548 (1989).
Enge, M. et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 21, 4307–4316 (2002).
Diaz-Araya, C. M., Provis, J. M., Penfold, P. L. & Billson, F. A. Development of microglial topography in human retina. J. Comp. Neurol. 363, 53–68 (1995).
Stone, J. et al. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 37, 290–299 (1996).
Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F. & Sage, E. H. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66, 536–547 (1992).
Rehm, H. L. et al. Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J. Neurosci. 22, 4286–4292 (2002).
Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895 (2004).
Robitaille, J. et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nature Gen. 32, 326–330 (2002).
Niehrs, C. Norrin and frizzled; a new vein for the eye. Dev. Cell 6, 453–454 (2004).
Chan-Ling, T. et al. Astrocyte-endothelial cell relationships during human retinal vascular development. Invest. Ophthalmol. Vis. Sci. 45, 2020–2032 (2004).
Ohlmann, A. et al. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J. Neurosci. 25, 1701–1710 (2005).
Smith, L. E. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).
Heckenlively, J. R. et al. Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23, 518–522 (2003).
Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).
Dorrell, M. I. et al. Abnormal retinal vascular development associated with a mutation in the gene for the very low density lipoprotein receptor (VLDLR). Mol. Biol. Cell 14 (Suppl.), 260 (2003).
Grant, M. B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nature Med. 8, 607–612 (2002).
Sengupta, N. et al. The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 4908–4913 (2003).
Otani, A. et al. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nature Med. 8, 1004–1010 (2002).
Otani, A. et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J. Clin. Invest. 114, 765–774 (2004).
Dorrell, M. I., Otani, A., Aguilar, E., Moreno, S. K. & Friedlander, M. Adult bone marrow-derived stem cells use R-cadherin to target sites of neovascularization in the developing retina. Blood 103, 3420–3427 (2004).
Galimi, F., Summers, R. G., van Praag, H., Verma, I. M. & Gage, F. H. A role for bone marrow-derived cells in the vasculature of noninjured CNS. Blood 105, 2400–2402 (2005).
Arfken, C. L., Reno, P. L., Santiago, J. V. & Klein, R. Development of proliferative diabetic retinopathy in African-Americans and whites with type 1 diabetes. Diabetes Care 21, 792–795 (1998).
Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).
Adamis, A. P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450 (1994).
Koyama, R., Nakanishi, T., Ikeda, T. & Shimizu, A. Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 792, 5–21 (2003).
Hardy, P. et al. New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot. Essent. Fatty Acids 72, 301–325 (2005).
Beach, J. M., Schwenzer, K. J., Srinivas, S., Kim, D. & Tiedeman, J. S. Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J. Appl. Physiol. 86, 748–758 (1999).
Stefansson, E., Machemer, R., de Juan, E., McCuen, B. W. & Peterson, J. Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am. J. Ophthalmol. 113, 36–38 (1992).
Harris, A. et al. Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br. J. Ophthalmol. 80, 209–213 (1996).
Nguyen, Q. D. et al. Supplemental oxygen improves diabetic macular edema: a pilot study. Invest. Ophthalmol. Vis. Sci. 45, 617–624 (2004).
Stefansson, E., Hatchell, D. L., Fisher, B. L., Sutherland, F. S. & Machemer, R. Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats. Am. J. Ophthalmol. 101, 657–664 (1986).
Stefansson, E., Peterson, J. I. & Wang, Y. H. Intraocular oxygen tension measured with a fiber-optic sensor in normal and diabetic dogs. Am. J. Physiol. 256, H1127–H1133 (1989).
Linsenmeier, R. A. et al. Retinal hypoxia in long-term diabetic cats. Invest. Ophthalmol. Vis. Sci. 39, 1647–1655 (1988).
Poulaki, V. et al. Insulin-like growth factor-1 plays a pathogenetic role in diabetic retinopathy. Am. J. Pathol. 165, 457–469 (2004).
Gardner, T. W., Antonetti, D. A., Barber, A. J., LaNoue, K. F. & Levison, S. W. Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47 (Suppl. 2), S253–S262 (2002).
Barber, A. J. et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest. 102, 783–791 (1998).
Amin, R. H. et al. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 38, 36–47 (1997).
Krady, J. K. et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54, 1559–1565 (2005).
Holcik, M., Sonenberg, N. & Korneluk, R. G. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16, 469–473 (2000).
Acknowledgements
We thank the following for generously providing material for figures: T. Bennett (Fig. 2b, d), C. Betsholtz (Figs 4c, d, 5c), M. Friedlander (Fig. 6a), M. Fruttiger (Fig. 5d, e), F. Gage (Fig. 6b), F. Galimi (Fig. 6b), A. Otani (Fig. 6a), J. Provis (Fig. 2e) and T. Sandercoe (Fig. 2e). We acknowledge support from the Juvenile Diabetes Research Foundation and the American Diabetes Association (T.G.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.
Rights and permissions
About this article
Cite this article
Gariano, R., Gardner, T. Retinal angiogenesis in development and disease. Nature 438, 960–966 (2005). https://doi.org/10.1038/nature04482
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature04482