Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noise characteristics and prior expectations in human visual speed perception

Abstract

Human visual speed perception is qualitatively consistent with a Bayesian observer that optimally combines noisy measurements with a prior preference for lower speeds. Quantitative validation of this model, however, is difficult because the precise noise characteristics and prior expectations are unknown. Here, we present an augmented observer model that accounts for the variability of subjective responses in a speed discrimination task. This allowed us to infer the shape of the prior probability as well as the internal noise characteristics directly from psychophysical data. For all subjects, we found that the fitted model provides an accurate description of the data across a wide range of stimulus parameters. The inferred prior distribution shows significantly heavier tails than a Gaussian, and the amplitude of the internal noise is approximately proportional to stimulus speed and depends inversely on stimulus contrast. The framework is general and should prove applicable to other experiments and perceptual modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of a Bayesian estimator accounting for contrast-induced biases in speed perception.
Figure 2: Bayesian estimation and measurement noise.
Figure 3: Bayesian observer model for 2AFC speed discrimination experiment.
Figure 4: Parameters of the Bayesian observer model fitted to perceptual data of two representative subjects.
Figure 5: Perceived matching speeds as a function of contrast.
Figure 6: Speed discrimination thresholds.
Figure 7: Model comparison: average log-probability of the experimental data.
Figure 8: Model comparison: perceptual bias and discrimination predictions.

Similar content being viewed by others

References

  1. Thompson, P. Perceived rate of movement depends on contrast. Vision Res. 22, 377–380 (1982).

    Article  CAS  Google Scholar 

  2. Stone, L. & Thompson, P. Human speed perception is contrast dependent. Vision Res. 32, 1535–1549 (1992).

    Article  CAS  Google Scholar 

  3. Simoncelli, E. Distributed Analysis and Representation of Visual Motion. Thesis, Massachusetts Institute of Technology (1993).

    Google Scholar 

  4. Weiss, Y., Simoncelli, E. & Adelson, E. Motion illusions as optimal percept. Nat. Neurosci. 5, 598–604 (2002).

    Article  CAS  Google Scholar 

  5. Helmholtz, H. Treatise on Physiological Optics (Thoemmes Press, Bristol, UK, 2000). Original publication 1866.

    Google Scholar 

  6. Betsch, B., Einhäuser, W., Körding, K. & König, P. The world from a cat's perspective - statistics of natural videos. Biol. Cybern. 90, 41–50 (2004).

    Article  Google Scholar 

  7. Roth, S. & Black, M. On the spatial statistics of optical flow. International Conference on Computer Vision ICCV, 42–49 (2005).

    Google Scholar 

  8. Dong, D. & Atick, J. Statistics of natural time-varying images. Network: Comput. Neural Syst. 6, 345–358 (1995).

    Article  Google Scholar 

  9. Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. Adaptive rescaling maximizes information transmission. Neuron 26, 695–702 (2000).

    Article  CAS  Google Scholar 

  10. Fennema, C. & Thompson, W. Velocity determination in scenes containing several moving objects. Comput. Graph. Image Process. 9, 301–315 (1979).

    Article  Google Scholar 

  11. Horn, B. & Schunck, B. Determining optical flow. Artif. Intell. 17, 185–203 (1981).

    Article  Google Scholar 

  12. Simoncelli, E., Adelson, E. & Heeger, D. Probability distributions of optical flow. IEEE Conference on Computer Vision and Pattern Recognition, 310–313 (IEEE, 1991).

    Google Scholar 

  13. Weber, J. & Malik, J. Robust computation of optical flow in a multi-scale differential framework. Int. J. Comput. Vis. 14, 67–81 (1995).

    Article  Google Scholar 

  14. Weiss, Y. & Fleet, D. Velocity likelihoods in biological and machine vision. in Probabilistic Models of the Brain (Bradford Book, MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  15. Hürlimann, F., Kiper, D. & Carandini, M. Testing the Bayesian model of perceived speed. Vision Res. 42, 2253–2257 (2002).

    Article  Google Scholar 

  16. Stocker, A.A. Analog VLSI Circuits for the Perception of Visual Motion. (John Wiley & Sons, Chichester, UK, 2006).

    Book  Google Scholar 

  17. Ascher, D. & Grzywacz, N. A Bayesian model for the measurement of visual velocity. Vision Res. 40, 3427–3434 (2000).

    Article  CAS  Google Scholar 

  18. Stocker, A. & Simoncelli, E. Constraining a Bayesian model of human visual speed perception. in Advances in Neural Information Processing Systems NIPS Vol. 17 (eds. Saul, L.K., Weiss, Y. & Bottou, L.) (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  19. Sclar, G., Maunsell, J. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1–10 (1990).

    Article  CAS  Google Scholar 

  20. McKee, S. & Nakayama, K. The detection of motion in the peripheral visual field. Vision Res. 24, 25–32 (1984).

    Article  CAS  Google Scholar 

  21. McKee, S., Silvermann, G. & Nakayama, K. Precise velocity discrimintation despite random variations in temporal frequency and contrast. Vision Res. 26, 609–619 (1986).

    Article  CAS  Google Scholar 

  22. Welch, L. The perception of moving plaids reveals two motion-processing stages. Nature 337, 734–736 (1989).

    Article  CAS  Google Scholar 

  23. Stocker, A. Analog integrated 2-D optical flow sensor. Analog Integr. Circuits Signal Process. 46, 121–138 (2006).

    Article  Google Scholar 

  24. Yuille, A. & Grzywacz, N. A computational theory for the perception of coherent visual motion. Nature 333, 71–74 (1988).

    Article  CAS  Google Scholar 

  25. Heeger, D. & Simoncelli, E. Model of visual motion sensing. in Spatial Vision in Humans and Robots (Cambridge Univ. Press, Cambridge, UK, 1994).

    Google Scholar 

  26. Knill, D.C. & Richards, W. (eds.). Perception as Bayesian Inference (Cambridge Univ. Press, Cambridge, UK, 1996).

    Book  Google Scholar 

  27. Ernst, M. & Banks, M. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429ff (2002).

    Article  Google Scholar 

  28. Hillis, J., Ernst, M., Banks, M. & Landy, M. Combining sensory information: mandatory fusion within, but not between senses. Science 298, 1627ff (2002).

    Article  Google Scholar 

  29. Mamassian, P., Landy, M. & Maloney, L. Bayesian modelling of visual perception. in Probabilistic Models of the Brain (MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  30. Knill, D. & Saunders, J. Do humans optimally integrate stereo and texture information for judgements of surface slant? Vision Res. 43, 2539–2558 (2003).

    Article  Google Scholar 

  31. Alais, D. & Burr, D. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14, 257–262 (2004).

    Article  CAS  Google Scholar 

  32. Körding, K. & Wolpert, D. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  Google Scholar 

  33. Yuille, A., Fang, F., Schrater, P. & Kersten, D. Human and ideal observers for detecting image curves. Advances in Neural Information Processing Systems NIPS Vol. 16 (eds. Thrun, S., Saul, L. & Schölkopf, B.) (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  34. Thompson, P., Brooks, K. & Hammett, S. Speed can go up as well as down at low contrast: implications for models of motion perception. Vision Res. 46, 782–786 (2006).

    Article  Google Scholar 

  35. Albright, T. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1130 (1984).

    Article  CAS  Google Scholar 

  36. Movshon, J., Adelson, E., Gizzi, M. & Newsome, W. The analysis of moving visual patterns. Exp. Brain Res. Suppl. 11, 117–151 (1985).

    Article  Google Scholar 

  37. Britten, K., Shadlen, M., Newsome, W. & Movshon, A. The analysis of visual motion: a comparions of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  38. Priebe, N. & Lisberger, S. Estimating target speed from the population response in visual area MT. J. Neurosci. 24, 1907–1916 (2004).

    Article  CAS  Google Scholar 

  39. Pouget, A., Dayan, P. & Zemel, R. Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003).

    Article  CAS  Google Scholar 

  40. Shadlen, M., Britten, K., Newsome, W. & Movshon, J. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  Google Scholar 

  41. Nover, H., Anderson, C. & DeAngelis, G. A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance. J. Neurosci. 25, 10049–10060 (2005).

    Article  CAS  Google Scholar 

  42. Simoncelli, E.P. Local analysis of visual motion. in The Visual Neurosciences (MIT Press, Cambridge, Massachusetts, 2003).

    Google Scholar 

  43. Pack, C., Hunter, J. & Born, R. Contrast dependence of suppressive influences in cortical area MT of alert macaque. J. Neurophysiol. 93, 1809–1815 (2005).

    Article  Google Scholar 

  44. Stocker, A. & Simoncelli, E. Sensory adaptation within a Bayesian framework for perception. in Advances in Neural Information Processing Systems NIPS Vol. 18 (MIT Press, Vancouver, 2006).

    Google Scholar 

  45. Green, D. & Swets, J. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

  46. Wickens, T.D. Elementary Signal Detection Theory (Oxford University Press, Oxford, 2001).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank all subjects for participation in the psychophysical experiments. Thanks to J.A. Movshon and D. Heeger for helpful comments on the manuscript. This work was primarily funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan A Stocker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Raw psychometric data collected from subject 1 and 2 under all tested conditions. (PDF 1756 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stocker, A., Simoncelli, E. Noise characteristics and prior expectations in human visual speed perception. Nat Neurosci 9, 578–585 (2006). https://doi.org/10.1038/nn1669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing