Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Processing of low-probability sounds by cortical neurons

Abstract

The ability to detect rare auditory events can be critical for survival. We report here that neurons in cat primary auditory cortex (A1) responded more strongly to a rarely presented sound than to the same sound when it was common. For the rare stimuli, we used both frequency and amplitude deviants. Moreover, some A1 neurons showed hyperacuity for frequency deviants—a frequency resolution one order of magnitude better than receptive field widths in A1. In contrast, auditory thalamic neurons were insensitive to the probability of frequency deviants. These phenomena resulted from stimulus-specific adaptation in A1, which may be a single-neuron correlate of an extensively studied cortical potential—mismatch negativity—that is evoked by rare sounds. Our results thus indicate that A1 neurons, in addition to processing the acoustic features of sounds, may also be involved in sensory memory and novelty detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli, and examples of single-neuron responses in A1.
Figure 2: Population analysis for A1 neurons.
Figure 3: Discriminability of frequency by A1 neurons, expressed as percentage correct.
Figure 4: Additional properties of cortical SSA.
Figure 5: Responses of neurons in the auditory thalamus (MGB) do not show SSA for 90/10%, Δf = 0.10.

Similar content being viewed by others

References

  1. Ohzawa, I., Sclar, G. & Freeman, R.D. Contrast gain control in the cat visual cortex. Nature 298, 266–268 (1982).

    Article  CAS  Google Scholar 

  2. Müller, J.R., Metha, A.B., Krauskopf, J. & Lennie, P. Rapid adaptation in visual cortex to the structure of images. Science 285, 1405–1408 (1999).

    Article  Google Scholar 

  3. Fairhall, A.L., Lewen, G.D., Bialek, W. & de Ruyter Van Steveninck, R.R. Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001).

    Article  CAS  Google Scholar 

  4. Movshon, J.A. & Lennie, P. Pattern-selective adaptation in visual cortical neurones. Nature 278, 850–852 (1979).

    Article  CAS  Google Scholar 

  5. Saul, A.B. & Cynader, M.S. Adaptation in single units in visual cortex: the tuning of aftereffects in the spatial domain. Vis. Neurosci. 2, 593–607 (1989).

    Article  CAS  Google Scholar 

  6. Dragoi, V., Sharma, J. & Sur, M. Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28, 287–298 (2000).

    Article  CAS  Google Scholar 

  7. Dragoi, V., Rivadulla, C. & Sur, M. Foci of orientation plasticity in visual cortex. Nature 411, 80–86 (2001).

    Article  CAS  Google Scholar 

  8. Condon, C.D. & Weinberger, N.M. Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav. Neurosci. 105, 416–430 (1991).

    Article  CAS  Google Scholar 

  9. Malone, B.J. & Semple, M.N. Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus. J. Neurophysiol. 86, 1113–1130 (2001).

    Article  CAS  Google Scholar 

  10. Malone, B.J., Scott, B.H. & Semple, M.N. Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J. Neurosci. 22, 4625–4638 (2002).

    Article  CAS  Google Scholar 

  11. Sanes, D.H., Malone, B.J. & Semple, M.N. Role of synaptic inhibition in processing of dynamic binaural level stimuli. J. Neurosci. 18, 794–803 (1998).

    Article  CAS  Google Scholar 

  12. Nelken, I., Rotman, Y. & Bar-Yosef, O. Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397, 154–157 (1999).

    Article  CAS  Google Scholar 

  13. Näätänen, R. Attention and Brain Function (Lawrence Erlbaum, Hillsdale, New Jersey, 1992).

    Google Scholar 

  14. Tiitinen, H., May, P., Reinikainen, K. & Näätänen, R. Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372, 90–92 (1994).

    Article  CAS  Google Scholar 

  15. Picton, T.W., Alain, C., Otten, L., Ritter, W. & Achim, A. Mismatch negativity: different water in the same river. Audiol. Neurootol. 5, 111–139 (2000).

    Article  CAS  Google Scholar 

  16. Jacobsen, T. & Schröger, E. Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38, 723–727 (2001).

    Article  CAS  Google Scholar 

  17. Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P. & Winkler, I. “Primitive intelligence” in the auditory cortex. Trends Neurosci. 24, 283–288 (2001).

    Article  Google Scholar 

  18. Csépe, V., Karmos, G. & Molnár, M. Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat—animal model of mismatch negativity. Electroencephalogr. Clin. Neurophysiol. 66, 571–578 (1987).

    Article  Google Scholar 

  19. Csépe, V., Molnár, M., Karmos, G. & Winkler, I. Effect of changes in stimulus frequency on auditory evoked potentials in awake and anaesthetized cats. in Sleep 88 (eds. Horne, J. & Lovie, P.) 210–211 (Gustav Fischer, Stuttgart/New York, 1989).

    Google Scholar 

  20. Pincze, Z., Lakatos, P., Rajkai, C., Ulbert, I. & Karmos, G. Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin. Neurophysiol. 112, 778–784 (2001).

    Article  CAS  Google Scholar 

  21. Javitt, D.C., Steinschneider, M., Schroeder, C.E., Vaughan, H.G. Jr. & Arezzo, J.C. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res. 667, 192–200 (1994).

    Article  CAS  Google Scholar 

  22. May, P. et al. Frequency change detection in human auditory cortex. J. Comput. Neurosci. 6, 99–120 (1999).

    Article  CAS  Google Scholar 

  23. Fischer, C., Morlet, D. & Giard, M. Mismatch negativity and N100 in comatose patients. Audiol. Neurootol. 5, 192–197 (2000).

    Article  CAS  Google Scholar 

  24. Javitt, D.C. Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia. Audiol. Neurootol. 5, 207–215 (2000).

    Article  CAS  Google Scholar 

  25. Kujala, T. & Näätänen, R. The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neurosci. Biobehav. Rev. 25, 535–543 (2001).

    Article  CAS  Google Scholar 

  26. Deouell, L.Y., Hamalainen, H. & Bentin, S. Unilateral neglect after right-hemisphere damage: contributions from event-related potentials. Audiol. Neurootol. 5, 225–234 (2000).

    Article  CAS  Google Scholar 

  27. Kraus, N. et al. Discrimination of speech-like contrasts in the auditory thalamus and cortex. J. Acoust. Soc. Am. 96, 2758–2768 (1994).

    Article  CAS  Google Scholar 

  28. King, C., McGee, T., Rubel, E.W., Nicol, T. & Kraus, N. Acoustic features and acoustic changes are represented by different central pathways. Hear. Res. 85, 45–52 (1995).

    Article  CAS  Google Scholar 

  29. Kraus, N., McGee, T., Littman, T., Nicol, T. & King, C. Nonprimary auditory thalamic representation of acoustic change. J. Neurophysiol. 72, 1270–1277 (1994).

    Article  CAS  Google Scholar 

  30. Andersen, R.A., Knight, P.L. & Merzenich, M.M. The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J. Comp. Neurol. 194, 663–701 (1980).

    Article  CAS  Google Scholar 

  31. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 5323–5328 (1998).

    Article  CAS  Google Scholar 

  32. Phillips, D.P., Mendelson, J.R., Cynader, M.S. & Douglas, R.M. Responses of single neurones in cat auditory cortex to time-varying stimuli: frequency-modulated tones of narrow excursion. Exp. Brain. Res. 58, 443–454 (1985).

    Article  CAS  Google Scholar 

  33. Calford, M.B. & Semple, M.N. Monaural inhibition in cat auditory cortex. J. Neurophysiol. 73, 1876–1891 (1995).

    Article  CAS  Google Scholar 

  34. Brosch, M. & Schreiner, C.E. Time course of forward masking tuning curves in cat primary auditory cortex. J. Neurophysiol. 77, 923–943 (1997).

    Article  CAS  Google Scholar 

  35. Liberman, M.C. Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63, 442–455 (1978).

    Article  CAS  Google Scholar 

  36. Moore, B.C.J. Frequency analysis and pitch perception. in Human Psychophysics (eds. Yost, W.A., Popper, A.N. & Fay, R.R.) 56–115 (Springer, New York, 1993).

    Chapter  Google Scholar 

  37. Delgutte, B. Physiological models for basic auditory percepts. in Auditory Computation (eds. Hawkins, H.L., McMullen, T.A., Popper, A.N. & Fay, R.R.) 157–220 (Springer, New York, 1996).

    Chapter  Google Scholar 

  38. Amitay, S., Ahissar, M. & Nelken, I. Auditory processing deficits in reading disabled adults. J. Assoc. Res. Otolaryngol. 3, 302–320 (2002).

    Article  Google Scholar 

  39. Ahissar, M., Protopapas, A., Reid, M. & Merzenich, M.M. Auditory processing parallels reading abilities in adults. Proc. Natl. Acad. Sci. USA 97, 6832–6837 (2000).

    Article  CAS  Google Scholar 

  40. Masterton, R.B., Granger, E.M. & Glendenning, K.K. Psychoacoustical contribution of each lateral lemniscus. Hear. Res. 63, 57–70 (1992).

    Article  CAS  Google Scholar 

  41. Bar-Yosef, O., Rotman, Y. & Nelken, I. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J. Neurosci. 22, 8619–8632 (2002).

    Article  CAS  Google Scholar 

  42. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

Download references

Acknowledgements

We thank G. Morris and G. Chechik for critical reading of the manuscript, and G. Karmos, I. Winkler, L. Deouell, H. Pratt, S. Bentin, S. Marom and M. Ahissar for stimulating discussions on the SSA–MMN comparison. This work was supported by a Human Frontiers Science Program grant to I.N. and a Horowitz Foundation predoctoral fellowship to N.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Nelken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat Neurosci 6, 391–398 (2003). https://doi.org/10.1038/nn1032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing